Predicting Temperature and Humidity in Roadway with Water Trickling Using Principal Component Analysis-Long Short-Term Memory-Genetic Algorithm Method
Abstract
:1. Introduction
2. Dataset Preparation
2.1. Research Area Description
2.2. Apparatus
2.3. Dataset Used
3. Machine Learning Modeling
3.1. Fundamental Theory of PCA, LSTM, and GA
3.1.1. PCA
- (1)
- The original data are normalized for the purpose of eliminating the impact of dimensions on the calculation results. On this basis, the original matrix X∗ is established.
- (2)
- The covariance matrix P can be determined based on Equation (1), and then can eigenvalues and eigenvectors be obtained.
- (3)
- The number of principal components can be calculated by Equation (2):
- (4)
- The original matrix can be dimension reduced by combining the covariance matrix P and the number of principal components .
3.1.2. LSTM Networks
3.1.3. GA
- (1)
- Population initialization: binary encoding is utilized to convert feasible solutions in the problem space into genotype string structures in the genetic space, and the initial population is generated.
- (2)
- Individual evaluation: the fitness function values of individuals in the initial population are calculated.
- (3)
- Genetic operator calculation: new individuals are generated through three paths, namely selection operator, crossover operator, and mutation operator.
- (4)
- Whether the iteration conditions are met is identified. If not, Step 2 is conducted; otherwise, the optimal individual is decoded, and the optimal solution is output.
3.2. Modeling and Hyperparameter Tuning
3.3. Assessment
4. Results and Discussion
4.1. Total Enthalpy Difference Variation in Roadway with Water Trickling
4.2. Hyperparameter Tuning
4.3. Predictive Capability of the Models
4.3.1. Prediction of Temperature at the End of the Roadway
4.3.2. Prediction of Relative Humidity at the End of the Roadway
4.3.3. Analysis of Prediction Results
4.3.4. Comparison of Prediction Results with Other Prediction Models
4.4. Variable Importance
4.5. Limitations and Superiority
5. Conclusions
- (1)
- Thermal water trickling into the roadway can evidently change the enthalpy of the thermal system. The increase in upwelling water flow rate induces a linear rise of the enthalpy difference of humid air, but it barely affects the sensible heat of air. The increase in upwelling water temperature influences both the latent heat and sensible heat of air. As a result, the total enthalpy difference of the humid air rises nonlinearly.
- (2)
- The PCA-LSTM-GA model is robust in predicting the air humidity and temperature at the end of the trickling roadway. LSTM is suitable for processing time series data. GA is efficient in hyperparameter tuning of the LSTM. PCA optimizes the hybrid model, raising its convergence speed and bringing about an increase in .
- (3)
- As demonstrated by the importance scores, the airflow temperature at the end of the water trickling roadway is mainly influenced by the surrounding rock temperature (IS 0.661) and inlet airflow temperature (IS 0.264). The airflow humidity at the end of the roadway with water trickling is mainly influenced by the rock temperature in water upwelling section (IS 0.577), inlet airflow temperature (IS 0.187), and upwelling water temperature and flow rate (total IS 0.136), and it has an evident time effect. The enlightenment given to us is that, for thermal control for this type of roadway, a composite heat insulation structure with jet grouting and support techniques for heat insulation should be arranged.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sunkpal, M.; Roghanchi, P.; Kocsis, K.C. A Method to Protect Mine Workers in Hot and Humid Environments. Saf. Health Work 2017, 9, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Zhang, Y.; Li, K.; Zou, S. Computational evaluation of cooling system under deep hot and humid coal mine in China: A thermal comfort study. Tunn. Undergr. Space Technol. 2019, 90, 394–403. [Google Scholar]
- Yang, X.; Han, Q.; Pang, J.; Shi, X.; Hou, D.; Liu, C. Progress of heat-hazard treatment in deep mines. Min. Sci. Technol. 2011, 21, 295–299. [Google Scholar]
- Zhang, Y.; Wan, Z.J.; Gu, B.; Zhou, C.B.; Cheng, J.Y. Unsteady temperature field of surrounding rock mass in high geothermal roadway during mechanical ventilation. J. Cent. South Univ. 2017, 24, 374–381. [Google Scholar] [CrossRef]
- Wang, J.; Wan, Z.; Zhang, H.; Wu, D.; Zhang, Y.; Wang, Y.; Xiong, L.; Wang, G. Application of Thermal Insulation Gunite Material to the High Geo-Temperature Roadway. Adv. Civ. Eng. 2020, 2020, 8853870. [Google Scholar] [CrossRef]
- Wan, Z.; Bi, S.; Zhang, Y.; Wang, J.; Wu, D.; Wang, J. Framework of the theory and technology for simultaneous extraction of coal and geothermal resources. J. China Coal Soc. 2018, 43, 2099–2106. [Google Scholar]
- Ji, J.; Li, N.; Chang, Z.; Fan, Y.; Ni, L. Study on heat transfer characteristic parameters and cooling effect of cold wall cooling system in coal mines. Exp. Heat Transf. 2020, 33, 179–196. [Google Scholar] [CrossRef]
- He, M. Application of HEMS cooling technology in deep mine heat hazard control. Min. Sci. Technol. 2009, 19, 269–275. [Google Scholar] [CrossRef]
- Zhou, F.B.; Wei, L.J.; Xia, T.Q.; Wang, K.; Wu, X.Z.; Wang, Y.M. Principle, key technology and preliminary realization of mine intelligent ventilation. J. China Coal Soc. 2020, 45, 2225–2235. [Google Scholar]
- Zhang, Y.; Wan, Z.; Ma, Z.; Gu, B.; Ma, Y. Heat transfer analysis of surrounding rocks with thermal insulation layer in high geothermal roadway. Therm. Sci. 2017, 23, 178. [Google Scholar] [CrossRef]
- Шepбaнь, H.; Huang, H. Guidelines for Mine Cooling; Coal Industry Press: Beijing, China, 1982. (In Chinese) [Google Scholar]
- Cen, Y.Q.; Hu, C.S.; Hou, Q.Z. Investigation into unsteady heat transfer coefficient K between the surrounding rock of mine wells or lanes and airflow. J. Liaoning Tech. Univ. 1987, 3, 14. [Google Scholar]
- Zhou, X.H.; Shan, Y.F.; Wang, J.R. The Unsteady Thermal Exchange between Wall Rock and Airflow of Roadway. J. Liaoning Tech. Univ. (Nat. Sci. Ed.) 2002, 3, 264–266. [Google Scholar]
- Sun, P. A New Method for Calculating the Instable Heat Transfer Coefficient. J. China Univ. Min. Technol. 1991, 2, 36–40. [Google Scholar]
- Yakovenko, A.K.; Averin, G.V. Determination of the heat-transfer coefficient for a rock mass with small fourier numbers. J. Min. Sci. 1984, 20, 52–56. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhou, G.Q.; Wu, L. Unsteady heat-moisture transfer of wet airway in deep mining. J. Cent. South Univ. 2013, 20, 1971–1977. [Google Scholar] [CrossRef]
- Qin, Y. Computing the Unsteady-state Heat Transfer Criterion Between Air and Rock Surrounding Airway with Finite Difference Method. J. Xiangtan Min. Inst. 1998, 13, 6–10. [Google Scholar]
- Roy, T.R.; Singh, B. Computer simulation of transient climatic conditions in underground airways. Min. Sci. Technol. 1991, 13, 395–402. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, S.; Cheng, J.; Li, S.; Li, M. An Underground Air-Route Temperature Prediction Model for Ultra-Deep Coal Mines. Minerals 2015, 5, 527–545. [Google Scholar] [CrossRef]
- Wang, F.; Luo, F.; Huang, Y.; Zhu, L.; Hu, H. Thermal analysis and air temperature prediction in TBM construction tunnels. Appl. Therm. Eng. 2019, 158, 113822. [Google Scholar] [CrossRef]
- Yao, W.; Pang, J.; Ma, Q.; Lyimo, H. Influence and sensitivity analysis of thermal parameters on temperature field distribution of active thermal insulated roadway in high temperature mine. Int. J. Coal Sci. Technol. 2020, 8, 47–63. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, P.; Wang, H. Numerical Simulation Analysis of Unsteady Temperature in Thermal Insulation Supporting Roadway. Math. Probl. Eng. 2019, 2019, 6279164. [Google Scholar] [CrossRef]
- Nie, X.; Feng, S.; Shudu, Z.; Quan, G. Simulation study on the dynamic ventilation control of single head roadway in high-altitude mine based on thermal comfort. Adv. Civ. Eng. 2019, 2019, 2973504. [Google Scholar] [CrossRef]
- Wang, J. Geothermal and Its Applications; Science Press: Beijing, China, 2015. [Google Scholar]
- Janson, E.; Boyce, A.J.; Burnside, N.; Gzyl, G. Preliminary investigation on temperature, chemistry and isotopes of mine water pumped in Bytom geological basin (USCB Poland) as a potential geothermal energy source. Int. J. Coal Geol. 2016, 164, 104–114. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Hou, Q. Geothermal Water at a Coal Mine: From Risk to Resource. Mine Water Environ. 2015, 35, 294. [Google Scholar] [CrossRef]
- Liu, H.Q.; Wang, H.; Shao, X.W. Analysis and a simplified calculation method of the thermo-moisture exchange between the hot mining roadway wall and the airflow. J. Saf. Environ. 2012, 12, 208–212. [Google Scholar]
- Gao, J.L.; Xu, W.; Zhang, X.B. Treatment of water evaporation during calculation of temperature and humidity of airflow caused by heat release from surrounding rock. J. China Coal Soc. 2010, 35, 951–955. [Google Scholar]
- Li, Z.; Wang, T.M.; Zhang, M.Q.; Jia, J.; Lin, L. Construction of air flow heat transfer coefficient and calculation of airflow temperature in mine wet roadway. J. China Coal Soc. 2017, 42, 3176–3181. [Google Scholar]
- Yu, X.; Zijun, L.; Junjian, W.; Yin, C.; Huasen, L.; Wei, P.; Mintao, J. Research on simulation experiment for synergetic mining of geothermal energy to heat hazard control. J. Cent. South Univ. (Sci. Technol.) 2023, 54, 2162–2173. [Google Scholar]
- Li, Z.; Xu, Y.; Jia, M.; Liu, H.; Pan, W.; Deng, Y. Numerical simulation on heat hazard control by collaborative. J. Central South Univ. (Sci. Technol.) 2021, 52, 671–680. [Google Scholar]
- Zhang, Z.; Wang, S.H.; Yin, H.; Yang, T.J.; Wang, P.Y. Fracture seepage and the temperature field distribution of rocks surrounding high-temperature tunnels: A numerical analysis. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 30. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, J.; Li, G.; Ma, G.; Huang, Y.; Sun, J.; Nener, B. Determination of Young’s modulus of jet grouted coalcretes using an intelligent model. Eng. Geol. 2019, 252, 43–53. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Wang, Y. Predicting tunnel squeezing using a hybrid classifier ensemble with incomplete data. Bull. Eng. Geol. Environ. 2020, 79, 3245–3256. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, J.; Li, G.; Wang, Y.; Sun, J.; Jiang, C. Optimized neural network using beetle antennae search for predicting the unconfined compressive strength of jet grouting coalcretes. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 801–813. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, R.; Yang, J. Prediction of coal and gas outburst: A method based on the BP neural network optimized by GASA. Process Saf. Environ. Prot. 2019, 133, 64–72. [Google Scholar] [CrossRef]
- Zhao, D.; Wu, Q.; Cui, F.; Xu, H.; Zeng, Y.; Cao, Y.; Du, Y. Using random forest for the risk assessment of coal-floor water inrush in Panjiayao Coal Mine, northern China. Hydrogeol. J. 2018, 26, 2327–2340. [Google Scholar] [CrossRef]
- Tan, T.; Yang, Z.; Chang, F.; Zhao, K. Prediction of the First Weighting from the Working Face Roof in a Coal Mine Based on a GA-BP Neural Network. Appl. Sci. 2019, 9, 4159. [Google Scholar] [CrossRef]
- Jo, B.; Khan, R. An internet of things system for underground mine air quality pollutant prediction based on azure machine learning. Sensors 2018, 18, 930. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Liu, R.; Jing, H.; Su, H.; Yu, L.; He, L. Experimental Study of Nonlinear Flow Behaviors Through Fractured Rock Samples After High-Temperature Exposure. Rock Mech. Rock Eng. 2019, 52, 2963–2983. [Google Scholar] [CrossRef]
- Yin, Q.; Wu, J.; Zhu, C.; He, M.; Meng, Q.; Jing, H. Shear mechanical responses of sandstone exposed to high temperature under constant normal stiffness boundary conditions. Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 7, 35. [Google Scholar] [CrossRef]
- Yin, Q.; Wu, J.; Zhu, C.; Wang, Q.; Zhang, Q.; Jing, H.; Xie, J. The role of multiple heating and water cooling cycles on physical and mechanical responses of granite rocks. Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 7, 69. [Google Scholar] [CrossRef]
- Li, L.; Chang, F. Prediction and Application of Temperature and Humidity of Airflow in Deep and Long Tunnel. J. Highw. Transp. Res. Dev. 2021, 38, 110–116. [Google Scholar]
- Bascompta, M.; Rossell, J.M.; Sanmiquel, L.; Anticoi, H. Temperature Prediction Model in the Main Ventilation System of an Underground Mine. Appl. Sci. 2020, 10, 7238. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhou, G.Q.; Wei, Y.Z.; Kuang, L.F.; Wu, L. Experimental research on changes in the unsteady temperature field of an airway in deep mining engineering. J. China Univ. Min. Technol. 2011, 40, 345–350. [Google Scholar]
- Zhang, Y.; Wan, Z.; Gu, B.; Zhou, C. An experimental investigation of transient heat transfer in surrounding rock mass of high geothermal roadway. Therm. Sci. 2016, 20, 2149–2158. [Google Scholar] [CrossRef]
- Lever, J.; Krzywinski, M.; Altman, N. Points of Significance: Principal component analysis. Nat. Methods 2017, 14, 641–642. [Google Scholar] [CrossRef]
- de Almeida, F.A.; Santos AC, O.; de Paiva, A.P.; Gomes, G.F.; Gomes, J.H.D.F. Multivariate Taguchi loss function optimization based on principal components analysis and normal boundary intersection. Eng. Comput. 2020, 38, 1627–1643. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Zhang, Q.; Li, C.; Feng, Y.; Wang, Y.; Ma, H. Petrophysical static rock typing for carbonate reservoirs based on mercury injection capillary pressure curves using principal component analysis. J. Pet. Sci. Eng. 2019, 181, 106175. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Palangi, H.; Deng, L.; Shen, Y.; Gao, J.; He, X.; Chen, J.; Song, X.; Ward, R. Deep Sentence Embedding Using Long Short-Term Memory Networks: Analysis and Application to Information Retrieval. IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 694–707. [Google Scholar] [CrossRef]
- Ma, J.; Ding, Y.; Cheng, J.C.; Jiang, F.; Wan, Z. A Temporal-Spatial Interpolation and Extrapolation Method Based on Geographic Long Short-Term Memory Neural Network for PM2.5. J. Clean. Prod. 2019, 237, 117729. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Jin, Y.F.; Huang, H.W.; Shen, S.L. Evolutionary polynomial regression based modelling of clay compressibility using an enhanced hybrid real-coded genetic algorithm. Eng. Geol. 2016, 210, 158–167. [Google Scholar] [CrossRef]
- Park, H.I.; Kim, K.S.; Kim, H.Y. Field performance of a genetic algorithm in the settlement prediction of a thick soft clay deposit in the southern part of the Korean peninsula. Eng. Geol. 2015, 196, 150–157. [Google Scholar] [CrossRef]
- Qi, C.; Chen, Q.; Fourie, A.; Zhang, Q. An intelligent modelling framework for mechanical properties of cemented paste backfill. Miner. Eng. 2018, 123, 16–27. [Google Scholar] [CrossRef]
- Lingaraj, H. A Study on Genetic Algorithm and its Applications. Int. J. Comput. Sci. Eng. 2016, 4, 139–143. [Google Scholar]
- Tian, J.; Qi, C.; Sun, Y.; Yaseen, Z.M.; Pham, B.T. Permeability prediction of porous media using a combination of computational fluid dynamics and hybrid machine learning methods. Eng. Comput. 2020, 37, 3455–3471. [Google Scholar] [CrossRef]
- Bacardit, A.; Morera, J.M.; Ollé, L.; Bartolí, E.; Dolors, B.M. Mine Ventilation and Air Conditioning, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1961. [Google Scholar]
- Qasem, S.N.; Samadianfard, S.; Nahand, H.S.; Mosavi, A.; Shamshirband, S.; Chau, K.W. Estimating Daily Dew Point Temperature Using Machine Learning Algorithms. Water 2019, 11, 582. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Li, G.; Wang, Y.; Sun, J.; Li, J. Machine-learning-assisted shear strength prediction of reinforced concrete beams with and without stirrups. Eng. Comput. 2020, 38, 1293–1307. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Qi, C.; Fourie, A.; Chen, Q.; Zhang, Q. A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill. J. Clean. Prod. 2018, 183, 566–578. [Google Scholar] [CrossRef]
Parameter | Mean Value | Standard Deviation | Min Value | Max Value |
---|---|---|---|---|
(min) | 97 | 5 | 205 | |
(mL/min) | 125 | 50 | 200 | |
(°C) | 60 | 40 | 80 | |
(°C) | 37.8 | 1.4 | 34.3 | 42.2 |
(°C) | 23.0 | 0.8 | 21.0 | 24.2 |
(°C) | 41.3 | 1.2 | 39.4 | 43.2 |
(°C) | 45.4 | 1.2 | 43.4 | 47.2 |
(°C) | 44.8 | 1.5 | 42.5 | 46.9 |
(%) | 21.0 | 2.5 | 16.7 | 25.4 |
(%) | 26.2 | 7.7 | 12.8 | 40.2 |
(°C) | 34.3 | 2.5 | 28.2 | 37.4 |
Number of Units in LSTM Layer | Batch Size | Optimizer Learning Rate | Dropout Layer Parameter | |
---|---|---|---|---|
LSTM-GA | 78 | 11 | 0.0068195 | 0.283 |
PCA-LSTM-GA | 34 | 20 | 0.001759 | 0.151 |
Number of Units in LSTM Layer | Batch Size | Optimizer Learning Rate | Dropout Layer Parameter | |
---|---|---|---|---|
LSTM-GA | 42 | 20 | 0.00654 | 0.254 |
PCA-LSTM-GA | 16 | 21 | 0.009253 | 0.1163 |
Prediction Model | Temperature | Relative Humidity | ||
---|---|---|---|---|
MSE | R2 | MSE | R2 | |
PCA-LSTM-GA | 5.871310 × 10−6 | 0.9915 | 3.2413 × 10−4 | 0.9462 |
PCA-RNN-GA | 7.2956 × 10−6 | 0.9862 | 3.3891 × 10−4 | 0.9407 |
PCA-BP-GA | 8.4125 × 10−6 | 0.9841 | 3.5692 × 10−4 | 0.9359 |
PCA-XGBoost-GA | 2.16435 × 10−6 | 0.9617 | 3.7128 × 10−4 | 0.9243 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Jia, Z.; Zhang, Y.; Wang, J. Predicting Temperature and Humidity in Roadway with Water Trickling Using Principal Component Analysis-Long Short-Term Memory-Genetic Algorithm Method. Appl. Sci. 2023, 13, 13343. https://doi.org/10.3390/app132413343
Wu D, Jia Z, Zhang Y, Wang J. Predicting Temperature and Humidity in Roadway with Water Trickling Using Principal Component Analysis-Long Short-Term Memory-Genetic Algorithm Method. Applied Sciences. 2023; 13(24):13343. https://doi.org/10.3390/app132413343
Chicago/Turabian StyleWu, Dong, Zhichao Jia, Yanqi Zhang, and Junhui Wang. 2023. "Predicting Temperature and Humidity in Roadway with Water Trickling Using Principal Component Analysis-Long Short-Term Memory-Genetic Algorithm Method" Applied Sciences 13, no. 24: 13343. https://doi.org/10.3390/app132413343
APA StyleWu, D., Jia, Z., Zhang, Y., & Wang, J. (2023). Predicting Temperature and Humidity in Roadway with Water Trickling Using Principal Component Analysis-Long Short-Term Memory-Genetic Algorithm Method. Applied Sciences, 13(24), 13343. https://doi.org/10.3390/app132413343