Cyclic Behaviors of Geopolymeric Recycled Brick Aggregate Concrete-Filled Steel Tubular Column
Abstract
:1. Introduction
2. Test Program
2.1. Test Specimens
2.2. Material Properties
2.3. Preparation of Specimens
2.4. Test Set-Up
3. Test Results and Discussion
3.1. Test Observations and Failure Mode
3.2. Hysteresis Curves
3.3. Skeleton Curves
3.4. Ductility
3.5. Degradation Characteristics
3.5.1. Stiffness Degradation
3.5.2. Strength Degradation
3.6. Energy Dissipation
3.7. Strain Analysis
4. Conclusions
- (1)
- The proposed GRBACFST column could develop good hysteretic behavior that was comparable to conventional CFST column, in terms of failure process, failure mode and deformation capacity. The plastic hinge always formed at the bottom region of column and the GRBACFST column failed with bulge of steel tube or rupture of steel tube at the corner. The inner GRBAC at the region with serious local buckling occurred was found with serious crush.
- (2)
- The hysteretic curves for proposed GRBACFST columns were full without an evident pinching effect and excellent deformation capacity. The incorporation of RBA and increase of axial compression ratio imposed an evidently negative effect on the bearing capacity, while a thicker steel tube was beneficial. The hysteretic behavior was analogous for tested specimens with different cementitious material.
- (3)
- The mechanical behavior was similar for all tested columns during the initial stage. However, once the steel tube yielded or buckled, the deference in the degradation stage was obvious. Specimens with larger RBA replacement ratio, higher axial compression ratio and thinner steel tube developed a serious degradation in mechanical behavior.
- (4)
- The confinement effect from steel tube could effectively offset the drawbacks of crushed brick aggregate, especially for cases with higher replacement ratios of RBA or under larger deformation. A thicker steel tube could improve the failure process of proposed GRBACFST column and benefit the bearing capacity, ductility as well as energy dissipation ability.
- (5)
- The hysteretic behavior was not sensitive to the change of cementitious material, and the geopolymers could serve as an effective alternative to the OPC as an eco-friendly binder for concrete. It was feasible to develop a green building material with industrial waste and construction waste, effectively dealing with the shortage of natural resources and environmental issue.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, T.; Xiao, J.; Tam, V.W. A closed-loop life cycle assessment of recycled aggregate concrete utilization in China. Waste Manag. 2016, 56, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hu, M.; Dong, L.; Xiang, P.; Zhang, Q.; Wu, J.; Li, B.; Shi, S. Co-benefits of urban concrete recycling on the mitigation of greenhouse gas emissions and land use change: A case in Chongqing metropolis, China. J. Clean. Prod. 2018, 201, 481–498. [Google Scholar] [CrossRef]
- Imbabi, M.S.; Carrigan, C.; McKenna, S. Trends and developments in green cement and concrete technology. Int. J. Sustain. Built Environ. 2012, 1, 194–216. [Google Scholar] [CrossRef] [Green Version]
- Andrew, R.M. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data 2019, 11, 1675–1710. [Google Scholar] [CrossRef] [Green Version]
- Marinković, S.B.; Ignjatović, I.S.; Radonjanin, V.S.; Malešev, M.M. Recycled aggregate concrete for structural use–an overview of technologies, properties and applications. Innov. Mater. Tech. Concr. Constr. 2012, 115–130. [Google Scholar] [CrossRef]
- Lotfi, S.; Eggimann, M.; Wagner, E.; Mróz, R.; Deja, J. Performance of recycled aggregate concrete based on a new concrete recycling technology. Constr. Build. Mater. 2015, 95, 243–256. [Google Scholar] [CrossRef]
- Liu, F.; Feng, W.; Xiong, Z.; Tu, G.; Li, L. Static and impact behaviour of recycled aggregate concrete under daily temperature variations. J. Clean. Prod. 2018, 191, 283–296. [Google Scholar] [CrossRef]
- Li, W.; Luo, Z.; Long, C.; Wu, C.; Duan, W.H.; Shah, S.P. Effects of nanoparticle on the dynamic behaviors of recycled aggregate concrete under impact loading. Mater. Des. 2016, 112, 58–66. [Google Scholar] [CrossRef]
- Liu, B.; Feng, C.; Deng, Z. Shear behavior of three types of recycled aggregate concrete. Constr. Build. Mater. 2019, 217, 557–572. [Google Scholar] [CrossRef]
- Gales, J.; Parker, T.; Cree, D.; Green, M. Fire performance of sustainable recycled concrete aggregates: Mechanical properties at elevated temperatures and current research needs. Fire Technol. 2016, 52, 817–845. [Google Scholar] [CrossRef]
- Pliya, P.; Cree, D.; Hajiloo, H.; Beaucour, A.-L.; Green, M.F.; Noumowé, A. High-strength concrete containing recycled coarse aggregate subjected to elevated temperatures. Fire Technol. 2019, 55, 1477–1494. [Google Scholar] [CrossRef]
- Guo, H.; Shi, C.; Guan, X.; Zhu, J.; Ding, Y.; Ling, T.C.; Zhao, H.; Wang, Y. Durability of recycled aggregate concrete–A review. Cem. Concr. Compos. 2018, 89, 251–259. [Google Scholar] [CrossRef]
- Domingo-Cabo, A.; Lázaro, C.; López-Gayarre, F.; Serrano-López, M.A.; Serna, P.; Castaño-Tabares, J.O. Creep and shrinkage of recycled aggregate concrete. Constr. Build. Mater. 2009, 23, 2545–2553. [Google Scholar] [CrossRef]
- Seara-Paz, S.; González-Fonteboa, B.; Martínez-Abella, F.; González-Taboada, I. Time-dependent behaviour of structural concrete made with recycled coarse aggregates. Creep and shrinkage. Constr. Build. Mater. 2016, 122, 95–109. [Google Scholar] [CrossRef]
- Xiao, J.; Poon, C.S.; Wang, Y.; Zhao, Y.; Ding, T.; Geng, Y.; Ye, T.; Li, L. Fundamental behaviour of recycled aggregate concrete–Overview I: Strength and deformation. Mag. Concr. Res. 2022, 74, 1–12. [Google Scholar] [CrossRef]
- Tabsh, S.W.; Abdelfatah, A.S. Influence of recycled concrete aggregates on strength properties of concrete. Constr. Build. Mater. 2009, 23, 1163–1167. [Google Scholar] [CrossRef]
- Medina, C.; Zhu, W.; Howind, T.; de Rojas, M.I.S.; Frías, M. Influence of mixed recycled aggregate on the physical-mechanical properties of recycled concrete. J. Clean. Prod. 2014, 68, 216–225. [Google Scholar] [CrossRef]
- Formoso, C.T.; Soibelman, L.; De Cesare, C.; Isatto, E.L. Material waste in building industry: Main causes and prevention. J. Constr. Eng. Manag. 2002, 128, 316–325. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, T.U.; Hasnat, A.; Awal, M.A.; Bosunia, S.Z. Recycling of brick aggregate concrete as coarse aggregate. J. Mater. Civ. Eng. 2015, 27, B4014005. [Google Scholar] [CrossRef]
- He, Z.; Shen, A.; Wang, W.; Zuo, X.; Wu, J. Evaluation and optimization of various treatment methods for enhancing the properties of brick-concrete recycled coarse aggregate. J. Adhes. Sci. Technol. 2021, 36, 1–21. [Google Scholar] [CrossRef]
- Younis, K.H.; Pilakoutas, K. Strength prediction model and methods for improving recycled aggregate concrete. Constr. Build. Mater. 2013, 49, 688–701. [Google Scholar] [CrossRef]
- Yang, J.; Shaban, W.M.; Elbaz, K.; Thomas, B.S.; Xie, J.; Li, L. Properties of concrete containing strengthened crushed brick aggregate by pozzolan slurry. Constr. Build. Mater. 2020, 247, 118612. [Google Scholar] [CrossRef]
- Junak, J.; Sicakova, A.; Junakova, N. Surface treatments of recycled brick aggregate and their influence on selected properties of concrete. Proceedings of Advances in Environmental Engineering, Virtual Conference, Czech Republic, 25–26 November 2021; 2021; Volume 900, p. 12014. [Google Scholar] [CrossRef]
- Islam, M.; Siddique, M.A.A. Behavior of low grade steel fiber reinforced concrete made with fresh and recycled brick aggregates. Adv. Civ. Eng. 2017, 2017, 1812363. [Google Scholar] [CrossRef]
- Tam, V.W.; Soomro, M.; Evangelista AC, J.; Haddad, A. Deformation and permeability of recycled aggregate concrete-A comprehensive review. J. Build. Eng. 2021, 44, 103393. [Google Scholar] [CrossRef]
- Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, S. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 2015, 85, 78–90. [Google Scholar] [CrossRef]
- Almutairi, A.L.; Tayeh, B.A.; Adesina, A.; Isleem, H.F.; Zeyad, A.M. Potential applications of geopolymer concrete in construction: A review. Case Stud. Constr. Mater. 2021, 15, e00733. [Google Scholar] [CrossRef]
- Villaquirán-Caicedo, M.A. Studying different silica sources for preparation of alternative waterglass used in preparation of binary geopolymer binders from metakaolin/boiler slag. Constr. Build. Mater. 2019, 227, 116621. [Google Scholar] [CrossRef]
- Xie, T.; Ozbakkaloglu, T. Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram. Int. 2015, 41, 5945–5958. [Google Scholar] [CrossRef]
- Nuaklong, P.; Sata, V.; Chindaprasirt, P. Influence of recycled aggregate on fly ash geopolymer concrete properties. J. Clean. Prod. 2016, 112, 2300–2307. [Google Scholar] [CrossRef]
- Hu, Y.; Tang, Z.; Li, W.; Li, Y.; Tam, V.W. Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates. Constr. Build. Mater. 2019, 226, 139–151. [Google Scholar] [CrossRef]
- Xie, J.; Wang, J.; Rao, R.; Wang, C.; Fang, C. Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate. Compos. Part B Eng. 2019, 164, 179–190. [Google Scholar] [CrossRef]
- Tang, Z.; Li, W.; Tam, V.W.; Luo, Z. Investigation on dynamic mechanical properties of fly ash/slag-based geopolymeric recycled aggregate concrete. Compos. Part B Eng. 2020, 185, 107776. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Ye, Z.-M.; Vernerey, F.; Xi, Y. Development of processing methods to improve strength of concrete with 100% recycled coarse aggregate. J. Mater. Civ. Eng. 2015, 27, 04014163. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Hu, Y.; Tam, V.W.; Li, W. Uniaxial compressive behaviors of fly ash/slag-based geopolymeric concrete with recycled aggregates. Cem. Concr. Compos. 2019, 104, 103375. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, J.; Chen, Y.; Lui, E.M. Recycling and reuse of construction and demolition waste in concrete-filled steel tubes: A review. Constr. Build. Mater. 2016, 126, 641–660. [Google Scholar] [CrossRef]
- Xu, J.-J.; Chen, Z.-P.; Xiao, Y.; Demartino, C.; Wang, J.-H. Recycled aggregate concrete in FRP-confined columns: A review of experimental results. Compos. Struct. 2017, 174, 277–291. [Google Scholar] [CrossRef]
- Tang, Z.; Li, W.; Tam, V.W.; Yan, L. Mechanical behaviors of CFRP-confined sustainable geopolymeric recycled aggregate concrete under both static and cyclic compressions. Compos. Struct. 2020, 252, 112750. [Google Scholar] [CrossRef]
- Dey, T.; Das, C.S.; Mishra, N. Behaviour of confined recycled aggregate concrete under compressive loading: An experimental investigation. J. Build. Eng. 2020, 32, 101825. [Google Scholar] [CrossRef]
- Zhao, J.L.; Yu, T.; Teng, J.G. Stress-strain behavior of FRP-confined recycled aggregate concrete. J. Compos. Constr. 2015, 19, 4014054. [Google Scholar] [CrossRef]
- Xie, T.; Ozbakkaloglu, T. Behavior of recycled aggregate concrete-filled basalt and carbon FRP tubes. Constr. Build. Mater. 2016, 105, 132–143. [Google Scholar] [CrossRef]
- Tang, Y.-C.; Li, L.-J.; Feng, W.-X.; Liu, F.; Liao, B. Seismic performance of recycled aggregate concrete–filled steel tube columns. J. Constr. Steel Res. 2017, 133, 112–124. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, X. The hysteretic behavior of recycled aggregate concrete-filled square steel tube columns. Eng. Struct. 2019, 198, 109523. [Google Scholar] [CrossRef]
- GB/T228.1-2010; Metallic Materials-Tensile Testing Part 1: Method of Test at Room Temperature. Standards Press of China: Beijing, China, 2010. (In Chinese)
- GB/T50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. China Architecture & Building Press: Beijing, China, 2019. (In Chinese)
- Krawinkler, H.; Applied Technology Council. Guidelines for Cyclic Seismic Testing of Components of Steel Structures; Applied Technology Council ATC-24: Redwood City, CA, USA.
- Xie, J.; Wang, J.; Zhang, B.; Fang, C.; Li, L. Physicochemical properties of alkali activated GGBS and fly ash geopolymeric recycled concrete. Constr. Build. Mater. 2019, 204, 384–398. [Google Scholar] [CrossRef]
No. | D/mm | t/mm | r/% | n | N/kN |
---|---|---|---|---|---|
STG4-0-0.25 | 130 | 4 | 0% | 0.25 | 320.43 |
STG4-0.3-0.25 | 130 | 4 | 30% | 0.25 | 298.85 |
STG4-0.5-0.25 | 130 | 4 | 50% | 0.25 | 292.6 |
STG4-0.7-0.25 | 130 | 4 | 70% | 0.25 | 294.2 |
STG4-1-0.25 | 130 | 4 | 100% | 0.25 | 280.73 |
STG4-0.5-0.05 | 130 | 4 | 50% | 0.05 | 58.52 |
STG4-0.5-0.5 | 130 | 4 | 50% | 0.5 | 585.21 |
STG6-0.5-0.25 | 130 | 6 | 50% | 0.25 | 325.44 |
STM4-0-0.25 | 130 | 4 | 0% | 0.25 | 328.55 |
STM4-0.5-0.25 | 130 | 4 | 50% | 0.25 | 294.87 |
STM4-1-0.25 | 130 | 4 | 100% | 0.25 | 275.15 |
B × t (mm) | Yield Strength fy (MPa) | Ultimate Strength fu (MPa) | Yield Strain εy | Elastic Modulus Ec (N/mm2) | Poisson’s Ratio μ | |
---|---|---|---|---|---|---|
140 × 4 | 1 | 369.5 | 509.9 | 0.002466 | 210,364 | 0.290 |
2 | 378.4 | 510.1 | 0.002651 | 210,150 | 0.286 | |
3 | 371.8 | 510.5 | 0.002620 | 210,431 | 0.287 | |
AVG. | 373.3 | 510.2 | 0.002579 | 210,315 | 0.288 | |
140 × 6 | 1 | 308.3 | 444.9 | 0.002206 | 208,532 | 0.271 |
2 | 299.8 | 433.9 | 0.002065 | 209,368 | 0.273 | |
3 | 310.0 | 443.2 | 0.002209 | 208,134 | 0.271 | |
AVG. | 306.0 | 440.7 | 0.002163 | 208,678 | 0.272 |
Specimens | rBA/% | Sols Ratio | Materials | fcu | |||||
---|---|---|---|---|---|---|---|---|---|
Alkali Activator | Fly Ash | Slag | Sand | Stone | RBA | ||||
GRBAC-0 | 0 | 0.55 | 357 | 487.5 | 162.5 | 787 | 1451 | 0 | 55.18 |
GRBAC-30 | 30 | 0.55 | 357 | 487.5 | 162.5 | 787 | 1016 | 435 | 45.28 |
GRBAC-50 | 50 | 0.55 | 357 | 487.5 | 162.5 | 787 | 725.5 | 725.5 | 43.05 |
GRBAC-70 | 70 | 0.55 | 357 | 487.5 | 162.5 | 787 | 435 | 1016 | 42.31 |
GRBAC-100 | 100 | 0.55 | 357 | 487.5 | 162.5 | 787 | 0 | 1451 | 37.21 |
Specimens | rBA/% | Materials | fcu | ||||
---|---|---|---|---|---|---|---|
Sand | Stone | RBA | Water | OPC | |||
RBAC-0 | 0 | 698 | 1080 | 0 | 180 | 460 | 58.73 |
RBAC-50 | 50 | 698 | 540 | 540 | 180 | 460 | 43.38 |
RBAC-100 | 100 | 698 | 0 | 1080 | 180 | 460 | 34.97 |
Specimen NO. | Direction | Yield Point | Peak Point | Failure Pint | μ = ∆μ/∆y | |||
---|---|---|---|---|---|---|---|---|
STG4-0-0.25 | Pos. | 47.88 | 11.09 | 59.68 | 18.05 | 50.73 | 44.34 | 4.0 |
Neg. | 46.84 | 10.69 | 57.7 | 22.9 | 49.05 | 35.28 | 3.3 | |
Ave. | 47.36 | 10.89 | 58.69 | 20.48 | 49.89 | 39.81 | 3.65 | |
STG4-0.3-0.25 | Pos. | 31.44 | 7.73 | 50.5 | 19.5 | 42.93 | 29.76 | 3.85 |
Neg. | 46.95 | 12.54 | 57.7 | 25.3 | 49.05 | 38.83 | 3.1 | |
Ave. | 39.2 | 10.14 | 54.1 | 22.4 | 45.99 | 34.3 | 3.48 | |
STG4-0.5-0.25 | Pos. | 37.63 | 9.23 | 51.7 | 18.8 | 43.95 | 34.8 | 3.77 |
Neg. | 42.56 | 10.23 | 53.2 | 18.9 | 45.22 | 31.32 | 3.06 | |
Ave. | 40.1 | 9.73 | 52.45 | 18.85 | 44.59 | 33.06 | 3.42 | |
STG4-0.7-0.25 | Pos. | 37.84 | 11.24 | 45.9 | 17.9 | 39.02 | 41.08 | 3.66 |
Neg. | 41.98 | 9.86 | 52.3 | 16.3 | 44.46 | 31.47 | 3.19 | |
Ave. | 39.91 | 10.55 | 49.1 | 17.1 | 41.74 | 36.28 | 3.43 | |
STG4-1-0.25 | Pos. | 32.48 | 9.3 | 46.5 | 17.9 | 39.53 | 33.55 | 3.61 |
Neg. | 40.85 | 10.3 | 50.8 | 17.9 | 43.18 | 31.22 | 3.03 | |
Ave. | 36.67 | 9.8 | 48.65 | 17.9 | 41.36 | 32.39 | 3.32 | |
STG4-0.5-0.05 | Pos. | 35.8 | 10.33 | 48.7 | 28.5 | 41.4 | 77.08 | 7.46 |
Neg. | 40.68 | 10.81 | 52.6 | 28 | 44.71 | 59.87 | 5.54 | |
Ave. | 38.24 | 10.57 | 50.65 | 28.25 | 43.06 | 68.48 | 6.5 | |
STG4-0.5-0.5 | Pos. | 29.81 | 7.83 | 42.5 | 17.1 | 36.13 | 23.48 | 3.0 |
Neg. | 41.46 | 9.61 | 56.4 | 16.7 | 47.94 | 23.84 | 2.48 | |
Ave. | 35.64 | 8.72 | 49.45 | 16.9 | 42.04 | 23.66 | 2.74 | |
STG6-0.5-0.25 | Pos. | 52.1 | 10.99 | 67.4 | 26.3 | 57.29 | 40.69 | 3.73 |
Neg. | 47.81 | 9.78 | 62.6 | 23.3 | 53.21 | 40.07 | 4.1 | |
Ave. | 49.96 | 10.39 | 65 | 24.8 | 55.25 | 40.38 | 3.92 | |
STM4-0-0.25 | Pos. | 43.45 | 10.49 | 55.1 | 23.7 | 46.84 | 39.65 | 3.78 |
Neg. | 46.99 | 10.56 | 57 | 17.5 | 48.45 | 40.29 | 3.81 | |
Ave. | 45.22 | 10.53 | 56.05 | 20.6 | 47.65 | 39.97 | 3.8 | |
STM4-0.5-0.25 | Pos. | 45.79 | 10.61 | 54.8 | 18 | 46.58 | 38.46 | 3.63 |
Neg. | 41.37 | 10.48 | 50.3 | 18.8 | 42.76 | 38.92 | 3.71 | |
Ave. | 43.58 | 10.55 | 52.55 | 18.4 | 44.67 | 38.69 | 3.67 | |
STM 4-1-0.25 | Pos. | 40.75 | 9.9 | 49.8 | 17.1 | 42.33 | 36.63 | 3.7 |
Neg. | 40.87 | 10.54 | 48.5 | 16.9 | 41.23 | 35.52 | 3.37 | |
Ave. | 40.81 | 10.22 | 49.15 | 17 | 41.78 | 36.08 | 3.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, Y.; Liu, X.; Chen, Y.; Liu, R. Cyclic Behaviors of Geopolymeric Recycled Brick Aggregate Concrete-Filled Steel Tubular Column. Appl. Sci. 2023, 13, 1235. https://doi.org/10.3390/app13031235
Ni Y, Liu X, Chen Y, Liu R. Cyclic Behaviors of Geopolymeric Recycled Brick Aggregate Concrete-Filled Steel Tubular Column. Applied Sciences. 2023; 13(3):1235. https://doi.org/10.3390/app13031235
Chicago/Turabian StyleNi, Yanbin, Xiancheng Liu, Yahui Chen, and Ruyue Liu. 2023. "Cyclic Behaviors of Geopolymeric Recycled Brick Aggregate Concrete-Filled Steel Tubular Column" Applied Sciences 13, no. 3: 1235. https://doi.org/10.3390/app13031235
APA StyleNi, Y., Liu, X., Chen, Y., & Liu, R. (2023). Cyclic Behaviors of Geopolymeric Recycled Brick Aggregate Concrete-Filled Steel Tubular Column. Applied Sciences, 13(3), 1235. https://doi.org/10.3390/app13031235