Analysis of the Risk Factors for De Novo Subdural Hygroma in Patients with Traumatic Brain Injury Using Predictive Modeling and Association Rule Mining
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Dataset Preparation
2.2. Predictive Modeling and Statistical Analysis
2.3. SHAP and Association Rule Mining
3. Results
3.1. Patient Demographic
3.2. Feature Importance Analysis for the Entire Dataset and Individual Case
3.3. Dependency between CSO-PVS Severity and Age
3.4. Association Rule between De Novo Hygroma and CSO-PVS Severity
3.5. Performance Measurement for the Predictive Model
4. Discussion
4.1. De Novo Hygroma with Mild TBI Using a Machine Learning Technique
4.2. Data Mining Approach for Investigating the Causal Relationship
4.3. Cause of Trauma Analysis from the Perspective of TBI
4.4. XAI for Clinical Applications
4.5. Limitation of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heegaard, W.; Biros, M. Traumatic brain injury. Emerg. Med. Clin. N. Am. 2007, 25, 655–678. [Google Scholar] [CrossRef] [PubMed]
- Bruns Jr, J.; Hauser, W.A. The epidemiology of traumatic brain injury: A review. Epilepsia 2003, 44, 2–10. [Google Scholar] [CrossRef]
- Koo, H.-W.; Oh, M.; Kang, H.K.; Park, Y.K.; Lee, B.-J.; Han, S.R.; Yoon, S.W.; Choi, C.Y.; Sohn, M.-J.; Lee, C.H. High-degree centrum semiovale-perivascular spaces are associated with development of subdural fluid in mild traumatic brain injury. PLoS ONE 2019, 14, e0221788. [Google Scholar] [CrossRef] [Green Version]
- Lange, R.T.; Brickell, T.A.; Ivins, B.; Vanderploeg, R.D.; French, L.M. Variable, not always persistent, postconcussion symptoms after mild TBI in US military service members: A five-year cross-sectional outcome study. J. Neurotrauma 2013, 30, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Dunne, J.; Quiñones-Ossa, G.A.; Still, E.G.; Suarez, M.N.; González-Soto, J.A.; Vera, D.S.; Rubiano, A.M. The epidemiology of traumatic brain injury due to traffic accidents in Latin America: A narrative review. J. Neurosci. Rural. Pract. 2020, 11, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Echemendia, R.J.; Julian, L.J. Mild traumatic brain injury in sports: Neuropsychology’s contribution to a developing field. Neuropsychol. Rev. 2001, 11, 69–88. [Google Scholar] [CrossRef]
- Mayer, A.R.; Quinn, D.K.; Master, C.L. The spectrum of mild traumatic brain injury: A review. Neurology 2017, 89, 623–632. [Google Scholar] [CrossRef]
- Pervez, M.; Kitagawa, R.S.; Chang, T.R. Definition of traumatic brain injury, neurosurgery, trauma orthopedics, neuroimaging, psychology, and psychiatry in mild traumatic brain injury. Neuroimaging Clin. 2018, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Esselman, P.C.; Uomoto, J. Classification of the spectrum of mild traumatic brain injury. Brain Inj. 1995, 9, 417–424. [Google Scholar] [CrossRef]
- St John, J.; Dila, C. Traumatic subdural hygroma in adults. Neurosurgery 1981, 9, 621–626. [Google Scholar] [CrossRef]
- Schachenmayr, W.; Friede, R. The origin of subdural neomembranes. I. Fine structure of the dura-arachnoid interface in man. Am. J. Pathol. 1978, 92, 53. [Google Scholar]
- Kwee, R.M.; Kwee, T.C. Virchow-Robin spaces at MR imaging. Radiographics 2007, 27, 1071–1086. [Google Scholar] [CrossRef] [PubMed]
- Smeijer, D.; Ikram, M.K.; Hilal, S. Enlarged perivascular spaces and dementia: A systematic review. J. Alzheimer’s Dis. 2019, 72, 247–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opel, R.A.; Christy, A.; Boespflug, E.L.; Weymann, K.B.; Case, B.; Pollock, J.M.; Silbert, L.C.; Lim, M.M. Effects of traumatic brain injury on sleep and enlarged perivascular spaces. J. Cereb. Blood Flow Metab. 2019, 39, 2258–2267. [Google Scholar] [CrossRef] [PubMed]
- Inglese, M.; Bomsztyk, E.; Gonen, O.; Mannon, L.J.; Grossman, R.I.; Rusinek, H. Dilated perivascular spaces: Hallmarks of mild traumatic brain injury. Am. J. Neuroradiol. 2005, 26, 719–724. [Google Scholar] [PubMed]
- Chong, S.-L.; Liu, N.; Barbier, S.; Ong, M.E.H. Predictive modeling in pediatric traumatic brain injury using machine learning. BMC Med. Res. Methodol. 2015, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Raj, R.; Luostarinen, T.; Pursiainen, E.; Posti, J.P.; Takala, R.S.; Bendel, S.; Konttila, T.; Korja, M. Machine learning-based dynamic mortality prediction after traumatic brain injury. Sci. Rep. 2019, 9, 17672. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.-D.; Chao, E.; Chen, S.-J.; Hueng, D.-Y.; Lan, H.-Y.; Chiang, H.-H. Machine learning algorithms to predict in-hospital mortality in patients with traumatic brain injury. J. Pers. Med. 2021, 11, 1144. [Google Scholar] [CrossRef]
- Cohen, S.; Ruppin, E.; Dror, G. Feature selection based on the shapley value. Other Words 2005, 1, 98Eqr. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.-Z. XAI—Explainable artificial intelligence. Sci. Robot. 2019, 4, eaay7120. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Tong, W.; Liu, Z.; Shi, T. Five-feature model for developing the classifier for synergistic vs. antagonistic drug combinations built by XGBoost. Front. Genet. 2019, 10, 600. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Imieliński, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on Management of Data, Washington, DC, USA, May 1993; pp. 207–216. [Google Scholar]
- Pazhanikumar, K.; Arumugaperumal, S. Association rule mining and medical application: A detailed survey. Int. J. Comput. Appl. 2013, 80. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Koo, H.-W.; Lee, B.-J.; Sohn, M.-J. Analysis of risk factors correlated with angiographic vasospasm in patients with aneurysmal subarachnoid hemorrhage using explainable predictive modeling. J. Clin. Neurosci. 2021, 91, 334–342. [Google Scholar] [CrossRef]
- Kim, K.H.; Koo, H.-W.; Lee, B.-J.; Yoon, S.-W.; Sohn, M.-J. Cerebral hemorrhage detection and localization with medical imaging for cerebrovascular disease diagnosis and treatment using explainable deep learning. J. Korean Phys. Soc. 2021, 79, 321–327. [Google Scholar] [CrossRef]
- Staartjes, V.E.; Stumpo, V.; Kernbach, J.M.; Klukowska, A.M.; Gadjradj, P.S.; Schröder, M.L.; Veeravagu, A.; Stienen, M.N.; van Niftrik, C.H.; Serra, C. Machine learning in neurosurgery: A global survey. Acta Neurochir. 2020, 162, 3081–3091. [Google Scholar] [CrossRef] [PubMed]
- Raju, B.; Jumah, F.; Ashraf, O.; Narayan, V.; Gupta, G.; Sun, H.; Hilden, P.; Nanda, A. Big data, machine learning, and artificial intelligence: A field guide for neurosurgeons. J. Neurosurg. 2020, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Inglese, M.; Grossman, R.I.; Diller, L.; Babb, J.S.; Gonen, O.; Silver, J.M.; Rusinek, H. Clinical significance of dilated Virchow-Robin spaces in mild traumatic brain injury. Brain Inj. 2006, 20, 15–21. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, H.; Zeng, J.; Pluimer, B.; Dong, S.; Xie, X.; Guo, X.; Ge, T.; Liang, X.; Feng, S. Mild traumatic brain injury induces microvascular injury and accelerates Alzheimer-like pathogenesis in mice. Acta Neuropathol. Commun. 2021, 9, 1–14. [Google Scholar] [CrossRef]
- Orrison Jr, W.W.; Hanson, E.H.; Alamo, T.; Watson, D.; Sharma, M.; Perkins, T.G.; Tandy, R.D. Traumatic brain injury: A review and high-field MRI findings in 100 unarmed combatants using a literature-based checklist approach. J. Neurotrauma 2009, 26, 689–701. [Google Scholar] [CrossRef]
- Moses, J.; Sinclair, B.; Law, M.; O’Brien, T.J.; Vivash, L. Automated Methods for Detecting and Quantitation of Enlarged Perivascular spaces on MRI. J. Magn. Reson. Imaging 2022, 57, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Zhu, Z.; Zhang, R.; Wu, X.; Jiaerken, Y.; Wang, S.; Yu, W.; Hong, H.; Lian, C.; Li, K. Factors associated with the dilation of perivascular space in healthy elderly subjects. Front. Aging Neurosci. 2021, 13, 624732. [Google Scholar] [CrossRef] [PubMed]
- Barda, A.J.; Horvat, C.M.; Hochheiser, H. A qualitative research framework for the design of user-centered displays of explanations for machine learning model predictions in healthcare. BMC Med. Inform. Decis. Mak. 2020, 20, 257. [Google Scholar] [CrossRef]
- Klann, J.G.; Szolovits, P.; Downs, S.M.; Schadow, G. Decision support from local data: Creating adaptive order menus from past clinician behavior. J. Biomed. Inform. 2014, 48, 84–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perçın, İ.; Yağin, F.H.; Güldoğan, E.; Yoloğlu, S. ARM: An interactive web software for association rules mining and an application in medicine. In Proceedings of the 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 21–22 September 2019; pp. 1–5. [Google Scholar]
- Ho, C.-H.; Liang, F.-W.; Wang, J.-J.; Chio, C.-C.; Kuo, J.-R. Impact of grouping complications on mortality in traumatic brain injury: A nationwide population-based study. PLoS ONE 2018, 13, e0190683. [Google Scholar] [CrossRef] [Green Version]
- Tandan, M.; Acharya, Y.; Pokharel, S.; Timilsina, M. Discovering symptom patterns of COVID-19 patients using association rule mining. Comput. Biol. Med. 2021, 131, 104249. [Google Scholar] [CrossRef]
- Oka, H.; Motomochi, M.; Suzuki, Y.; Ando, K. Subdural hygroma after head injury. Acta Neurochir. 1972, 26, 265–273. [Google Scholar] [CrossRef]
- Holzinger, A.; Langs, G.; Denk, H.; Zatloukal, K.; Müller, H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1312. [Google Scholar] [CrossRef] [Green Version]
- Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Huang, S.; Brooks, M.; Lee, M.J.; Asadi, H. Peering into the black box of artificial intelligence: Evaluation metrics of machine learning methods. Am. J. Roentgenol. 2019, 212, 38–43. [Google Scholar] [CrossRef]
- Markus, A.F.; Kors, J.A.; Rijnbeek, P.R. The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies. J. Biomed. Inform. 2021, 113, 103655. [Google Scholar] [CrossRef]
- Mirchi, N.; Bissonnette, V.; Yilmaz, R.; Ledwos, N.; Winkler-Schwartz, A.; Del Maestro, R.F. The Virtual Operative Assistant: An explainable artificial intelligence tool for simulation-based training in surgery and medicine. PloS ONE 2020, 15, e0229596. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.S.; Choi, S.H.; Jeong, B. Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network. Neuro-Oncol. 2019, 21, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Yoo, T.K.; Ryu, I.H.; Choi, H.; Kim, J.K.; Lee, I.S.; Kim, J.S.; Lee, G.; Rim, T.H. Explainable machine learning approach as a tool to understand factors used to select the refractive surgery technique on the expert level. Transl. Vis. Sci. Technol. 2020, 9, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celtikci, E. A systematic review on machine learning in neurosurgery: The future of decision-making in patient care. Turk Neurosurg 2018, 28, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchlak, Q.D.; Esmaili, N.; Leveque, J.-C.; Farrokhi, F.; Bennett, C.; Piccardi, M.; Sethi, R.K. Machine learning applications to clinical decision support in neurosurgery: An artificial intelligence augmented systematic review. Neurosurg. Rev. 2020, 43, 1235–1253. [Google Scholar] [CrossRef] [Green Version]
- Richens, D.; Kotidis, K.; Neale, M.; Oakley, C.; Fails, A. Rupture of the aorta following road traffic accidents in the United Kingdom 1992–1999. The results of the co-operative crash injury study. Eur. J. Cardio-Thorac. Surg. 2003, 23, 143–148. [Google Scholar] [CrossRef] [PubMed]
Group | Category | Mean ± STD or n (%) | p-Value † |
---|---|---|---|
Age | years | 50.55 ± 18.82 | <0.001 |
Sex | Male | 142 (63.96%) | 0.015 |
Female | 80 (36.04%) | ||
Trauma cause | Slip down | 66 (29.73%) | 0.815 |
In-car TA | 41 (18.47%) | ||
Bicycle TA | 34 (15.32%) | ||
Hitting | 24 (10.81%) | ||
Out-car TA | 22 (9.91%) | ||
Fall down | 21 (9.46%) | ||
Syncope | 14 (6.30%) | ||
Hypertension, n (%) | Yes | 56 (25.23%) | 0.116 |
No | 166 (74.77%) | ||
Diabetes, n (%) | Yes | 35 (15.77%) | 0.001 |
No | 187 (84.23%) | ||
CSO-PVS, n (%) | High-degree | 91 (40.99%) | <0.001 |
Low-degree | 131 (59.01%) | ||
Hygroma * | Development | 54 (24.32%) | - |
Non-development | 168 (75.68%) |
Consequents | Support | Confidence | Lift | Leverage | Conviction | |
---|---|---|---|---|---|---|
Hygroma de novo | CSO-PVS severity | 0.18 | 0.74 | 1.81 | 0.08 | 2.28 |
Hypertension | CSO-PVS severity | 0.13 | 0.50 | 1.22 | 0.02 | 1.18 |
Diabetes | CSO-PVS severity | 0.11 | 0.69 | 1.67 | 0.04 | 1.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.H.; Lee, B.-J.; Koo, H.-W. Analysis of the Risk Factors for De Novo Subdural Hygroma in Patients with Traumatic Brain Injury Using Predictive Modeling and Association Rule Mining. Appl. Sci. 2023, 13, 1243. https://doi.org/10.3390/app13031243
Kim KH, Lee B-J, Koo H-W. Analysis of the Risk Factors for De Novo Subdural Hygroma in Patients with Traumatic Brain Injury Using Predictive Modeling and Association Rule Mining. Applied Sciences. 2023; 13(3):1243. https://doi.org/10.3390/app13031243
Chicago/Turabian StyleKim, Kwang Hyeon, Byung-Jou Lee, and Hae-Won Koo. 2023. "Analysis of the Risk Factors for De Novo Subdural Hygroma in Patients with Traumatic Brain Injury Using Predictive Modeling and Association Rule Mining" Applied Sciences 13, no. 3: 1243. https://doi.org/10.3390/app13031243
APA StyleKim, K. H., Lee, B. -J., & Koo, H. -W. (2023). Analysis of the Risk Factors for De Novo Subdural Hygroma in Patients with Traumatic Brain Injury Using Predictive Modeling and Association Rule Mining. Applied Sciences, 13(3), 1243. https://doi.org/10.3390/app13031243