The Damage and Impulse Transfer Characteristics of Flexible Steel V-Structures with Large Bend Radii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Design and Selection
2.2. Explosion Test Method
2.3. Experimental Instrumentation and Measurements
3. Experimental Results
3.1. Permanent Damage Characteristics
3.1.1. 105° Internal Angle V-Structures
3.1.2. 120° Internal Angle V-Structures
3.2. Impulse Transfer and Permanent Displacement
3.3. Transient Response
4. Modelling Approach and Results
4.1. Computational Simulation Approach
4.2. Computational Simulation Results
4.3. Response Characteristics of V-Structures Subjected to Localized Blast Loads
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Army Technology, Cougar MRAP. 2021. Available online: https://www.army-technology.com/projects/cougar-mrap/ (accessed on 28 October 2022).
- Stiff, P. Taming the Landmine; Galago: Johannesburg, South Africa, 1986. [Google Scholar]
- US Department of Defense, Press Release, Washington, US, 14 October 2022. Available online: https://www.defense.gov/News/Releases/Release/Article/3189571/725-million-in-additional-security-assistance-for-ukraine/ (accessed on 28 October 2022).
- Shekhar, V.R.; Langdon, G.S. The effect of the bend radius on the impulse transfer characteristics of V-hulls: Numerical simulations. Int. J. Prot. Struct. 2020, 11, 69–89. [Google Scholar]
- Chung Kim Yuen, S.; Langdon, G.S.; Nurick, G.N.; Pickering, E.G.; Balden, V.H. Response of V-shape plates to localised blast load: Experiments and numerical simulation. Int. J. Impact Eng. 2012, 46, 97–109. [Google Scholar] [CrossRef]
- Pakulski, K.; Johnson, J.; Giffin, R.; Lo, M.; Wise, D.; St Onge, P.; Balcena, P.; Fridie, M.; Barrett, A. Prevention of Injury in Mine Resistant Ambush Protected (MRAP) Vehicle Accidents; US Army Aeromedical Research Laboratory Report No. 2013-14; US Army Aeromedical Research Laboratory: Fort Rucker, AL, USA, 2013. [Google Scholar]
- Ramasamy, A.; Hill, A.M.; Hepper, A.E.; Bull, A.M.J.; Clasper, J.C. Blast mines: Physics, injury mechanisms and vehicle protection. J. R. Army Med. Corps 2009, 155, 258–264. [Google Scholar] [CrossRef]
- Langdon, G.S.; Chung Kim Yuen, S.; Nurick, G.N.; Naidoo, K. Some insights into the response of ‘shallow V shape’ structures to air blast loading. Proc. Indian Natl. Sci. Acad. 2013, 79, 695–703. [Google Scholar] [CrossRef]
- Zhao, X.; Shultis, G.; Hurley, R.; Sutton, M.; Fourney, W.; Leiste, U.; Deng, X. Small scale models subjected to buried blast loading Part I: Floorboard accelerations and related passenger injury metrics with protective hulls. Exp. Mech. 2014, 54, 539–555. [Google Scholar] [CrossRef]
- Markose, A.; Rao, C.L. Mechanical response of V shaped plates under blast loading. Thin Walled Struct. 2017, 115, 12–20. [Google Scholar] [CrossRef]
- Follett, S. Blast Analysis of Composite V-Shaped Hulls: An Experimental and Numerical Approach. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2012. [Google Scholar]
- Anderson, C.E., Jr.; Behner, T.; Weiss, C.E. Mine blast loading experiments. Int. J. Impact Eng. 2011, 38, 697–706. [Google Scholar] [CrossRef]
- Baranowski, P.; Malachowski, J. Numerical study of selected military vehicle chassis to blast loading in terms of tire strength improving. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 867–878. [Google Scholar] [CrossRef] [Green Version]
- Genson, K.W. Vehicle Shaping for Mine Blast Damage Reduction. Master’s Thesis, University of Maryland, College Park, MD, USA, 2006. [Google Scholar]
- Makwana, D.R.; Thakur, D.G.; Kangude, V.; Patil, B.S. Numerical evaluation and study of the effects of mine blast on V-hull of wheeled combat vehicle. Int. J. Recent Res. Asp. 2017, 4, 427–431. [Google Scholar]
- Sahu, R.R.; Gupta, P.K. Blast diffusion by different shapes of hull. Int. J. Automot. Eng. Tech. 2013, 2, 130–139. [Google Scholar]
- Trajkovski, J.; Kunc, R.; Prebil, I. Parametric analysis study of blast loaded armour V-plates. Int. J. Prot. Struct. 2017, 8, 524–538. [Google Scholar] [CrossRef]
- Trajkovski, J.; Kunc, R.; Prebil, I. Blast response of centrally and eccentrically loaded flat-, U-, and V-shaped armored plates: Comparative study. Shock Waves 2017, 27, 583–591. [Google Scholar] [CrossRef]
- Bucur, F.; Rotariu, A.; Trana, E.; Stefan, A. Experimental and numerical study on the mitigation capability of some special design structures. Int. J. Mod. Manuf. Technol. 2020, XII, 7–15. [Google Scholar]
- Johnson, T.E.; Basudhar, A. A metamodel-based shape optimization approach for shallow-buried blast-loaded flexible underbody targets. Int. J. Impact Eng. 2015, 75, 229–240. [Google Scholar] [CrossRef]
- Kamal, H. Studying the trade-off between protection and mobility of armored vehicles. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017. IMECE2017-72531. [Google Scholar]
- Trajkovski, J.; Perenda, J.; Kunc, R. Blast response of light armored vehicles (LAVs) with flat and V-hull floor. Thin Walled Struct. 2018, 131, 238–244. [Google Scholar] [CrossRef]
- Langdon, G.S.; Curry, A.; Siddiqui, A. Improving the impulse transfer and response characteristics of explosion loaded compound V-plates. Thin Walled Struct. 2020, 148, 106609. [Google Scholar] [CrossRef]
- Langdon, G.S.; Curry, A.; Shekhar, V.R.; Siddiqui, A.; Murray, C.; von Klemperer, C.J. Attempts to improve on the V-hull structural design for air-blast loading applications. Ce/Papers 2021, 4, 1499–1506. [Google Scholar] [CrossRef]
- Stanislawek, S.; Morka, A. On the blast mitigation ability of multiple V-shape deflectors. Shock. Vib. 2020, 2020, 8708974. [Google Scholar] [CrossRef]
- Cong, M.; Yun-bo, Z.; Ming, Z.; Xiao-wang, S.; Cheng, C.; Cheng, J. Design and optimization of multi-V hulls of light armoured vehicles under blast loads. Thin Walled Struct. 2021, 168, 108311. [Google Scholar] [CrossRef]
- Erdik, A. Experimental and numerical study on dynamic response of V-shaped hull subjected to mine blast. Mech. Based Des. Struct. Mach. 2020, 50, 707–725. [Google Scholar] [CrossRef]
- Mehreganian, N.; Louca, L.A.; Langdon, G.S.; Curry, R.J.; Abdul-Karim, N. The response of mild steel and armour steel plates to localised air-blast loading—Comparison of numerical modelling techniques. Int. J. Impact Eng. 2018, 115, 81–93. [Google Scholar] [CrossRef]
- Langdon, G.S.; Gabriel, S.; von Klemperer, C.J.; Chung Kim Yuen, S. Transient response and failure of medium density fibreboard panels subjected to air-blast loading. Compos. Struct. 2021, 273, 114253. [Google Scholar] [CrossRef]
- Curry, R.J.; Langdon, G.S. Transient response of steel plates subjected to close proximity explosive detonations in air. Int. J. Impact Eng. 2017, 102, 102–116. [Google Scholar] [CrossRef]
- LS Dyna, Ansys. Available online: https://www.dynasupport.com/manuals (accessed on 15 June 2021).
- Geretto, C. The Effects of Different Degrees of Confinement on the Deformation of Square Plates Bubjected to Blast Loading. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2012. [Google Scholar]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Bornstein, H.; Kuznetsov, V.; Lu, J.-P.; Stojko, S.; Freundt, J. Characterising and validation of the JWL equation of state parameters for PE4. Int. J. Impact Eng. 2022, 164, 104190. [Google Scholar] [CrossRef]
- ASTM A370-17; Standard Test Methods and Definitions for Mechanical Testing of Steel Products. ASTM International: West Conshohocken, PA, USA, 2017.
- Curry, R.J.; Langdon, G.S. The effect of explosive charge backing in close-proximity air-blast loading. Int. J. Impact Eng. 2021, 151, 103822. [Google Scholar] [CrossRef]
- Rigby, S.E.; Akintaro, O.I.; Fuller, B.J.; Langdon, G.S.; Pope, D.J. Predicting the response of plates subjected to near-field explosions using an energy equivalent impulse. Int. J. Impact Eng. 2019, 128, 24–36. [Google Scholar] [CrossRef]
- Langdon, G.S.; Chung Kim Yuen, S.; Nurick, G.N. Experimental and numerical studies on the response of quadrangular stiffened plates, Part II—Localised blast loading. Int. J. Impact Eng. 2005, 31, 85–111. [Google Scholar] [CrossRef]
ρ0 (kg/m3) | D (m/s) | PCJ (GPa) | A (GPa) | B (GPa) | R1 | R2 | ω | E0 (GPa) |
---|---|---|---|---|---|---|---|---|
1616 | 8193 | 28 | 609.77 | 12.95 | 4.5 | 1.4 | 0.25 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shekhar, V.R.; von Klemperer, C.J.; Langdon, G.S. The Damage and Impulse Transfer Characteristics of Flexible Steel V-Structures with Large Bend Radii. Appl. Sci. 2023, 13, 1293. https://doi.org/10.3390/app13031293
Shekhar VR, von Klemperer CJ, Langdon GS. The Damage and Impulse Transfer Characteristics of Flexible Steel V-Structures with Large Bend Radii. Applied Sciences. 2023; 13(3):1293. https://doi.org/10.3390/app13031293
Chicago/Turabian StyleShekhar, Vinay R., Christopher J. von Klemperer, and Genevieve S. Langdon. 2023. "The Damage and Impulse Transfer Characteristics of Flexible Steel V-Structures with Large Bend Radii" Applied Sciences 13, no. 3: 1293. https://doi.org/10.3390/app13031293
APA StyleShekhar, V. R., von Klemperer, C. J., & Langdon, G. S. (2023). The Damage and Impulse Transfer Characteristics of Flexible Steel V-Structures with Large Bend Radii. Applied Sciences, 13(3), 1293. https://doi.org/10.3390/app13031293