Microbiological and Physical Changes Produced by Different Air–Powders on Contaminated Titanium Implant Surfaces: An In Vitro Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Assessment of Ability of Different Powders to Remove Biofilm
- (1)
- Group 1 (4 M contaminated and 4 MRS contaminated, 1 M not contaminated, 1 MRS not contaminated): treated with air–powder mechanical instrumentation delivering sodium bicarbonate powder (Air flow powder Classic®, 65 µm, EMS, Nyon, Switzerland);
- (2)
- Group 2 (4 M contaminated and 4 MRS contaminated, 1 M not contaminated, 1 MRS not contaminated): treated with air–powder mechanical instrumentation delivering sodium bicarbonate powder (Air Flow powder Classic Comfort®, 40 µm, EMS, Nyon, Switzerland);
- (3)
- Group 3 (4 M contaminated and 4 MRS contaminated, 1 M not contaminated, 1 MRS not contaminated): treated with air–powder mechanical instrumentation delivering glycine powder (Air-Flow Powder Perio®, 25 µm, EMS, Nyon, Switzerland);
- (4)
- Group 4 (4 M contaminated and 4 MRS contaminated,1 M not contaminated, 1 MRS not contaminated): treated with air–powder mechanical instrumentation delivering erythritol powder (Air-Flow Powder Plus®, 14 µm, EMS, Nyon, Switzerland);
- (5)
- Group 5 (4 M contaminated and 4 MRS contaminated, 1 M not contaminated, 1 MRS not contaminated): Air Flow Plus® with 0.05% Cetylpyridinium chloride (CPC);
- (6)
- Group 6 (4 M contaminated and 4 MRS contaminated, 1 M not contaminated, 1 MRS not contaminated): treated with air–powder mechanical instrumentation delivering calcium carbonate (Prophy Pearls Classic®, 60–70 µm, Kavo, Biberach, Germany);
- (7)
- Group 7 (4 M contaminated and 4 MRS contaminated): treated with air–powder mechanical instrumentation delivering distilled water.
2.3. Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM)
2.4. Evaluation of Surface Topography Changes after Treatment with Different Powders
2.5. Statistical Analysis
3. Results
3.1. CLSM
3.2. SEM
3.3. Profilometry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klinge, B.; Hultin, M.; Berglundh, T. Peri-implantitis. Dent. Clin. N. Am. 2005, 49, 661–676. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, G.; Santagati, M.; Guni, A.; Torrisi, P.; Spitale, A.; Stefani, S.; Ferlito, S.; Nibali, L. Microbiome differences in periodontal, peri-implant, and healthy sites: A cross-sectional pilot study. Clin. Oral Investig. 2022, 26, 2771–2781. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.-P.; Cao, N.-J.; Zhu, Y.-H.; Wang, W. The osseointegration and stability of dental implants with different surface treatments in animal models: A network meta-analysis. Sci. Rep. 2021, 11, 13849. [Google Scholar] [CrossRef]
- Heitz-Mayfield, L.J. Peri-implant diseases: Diagnosis and risk indicators. J. Clin. Periodontol. 2008, 35, 292–304. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Yang, Y.; Wang, Y.; Cao, X.; Jin, Y.; Xu, Y.; Li, S.C.; Zhou, Q. Periodontal and Peri-Implant Microbiome Dysbiosis Is Associated with Alterations in the Microbial Community Structure and Local Stability. Front. Microbiol. 2021, 12, 785191. [Google Scholar] [CrossRef]
- Araujo, M.G.; Lindhe, J. Peri-implant health. J. Periodontol. 2018, 89 (Suppl. 1), S249–S256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buser, D.; Mericske-Stern, R.; Bernard, J.P.; Behneke, A.; Behneke, N.; Hirt, H.P.; Belser, U.C.; Lang, N.P. Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants. Clin. Oral Implants Res. 1997, 8, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Ellegaard, B.; Baelum, V.; Karring, T. Implant therapy in periodontally compromised patients. Clin. Oral Implants Res. 1997, 8, 180–188. [Google Scholar] [CrossRef]
- Mombelli, A.; Lang, N.P. Microbial aspects of implant dentistry. Periodontol. 2000 1994, 4, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Howe, M.S.; Keys, W.; Richards, D. Long-term (10-year) dental implant survival: A systematic review and sensitivity meta-analysis. J. Dent. 2019, 84, 9–21. [Google Scholar] [CrossRef]
- Roccuzzo, A.; De Ry, S.P.; Sculean, A.; Roccuzzo, M.; Salvi, G.E. Current Approaches for the Non-surgical Management of Peri-implant Diseases. Curr. Oral Health Rep. 2020, 7, 274–282. [Google Scholar] [CrossRef]
- Mahato, N.; Wu, X.; Wang, L. Management of peri-implantitis: A systematic review, 2010–2015. Springerplus 2016, 5, 105. [Google Scholar] [CrossRef] [Green Version]
- Tetè, G.; Cattoni, F.; Polizzi, E. Anti-discoloration system: A new chlorhexidine mouthwash. J. Biol. Regul. Homeost. Agents 2021, 35, 113–118. [Google Scholar] [CrossRef]
- Figuero, E.; Graziani, F.; Sanz, I.; Herrera, D.; Sanz, M. Management of peri-implant mucositis and peri-implantitis. Periodontol. 2000 2014, 66, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Cattoni, F.; Tetè, G.; D’orto, B.; Bergamaschi, A.; Polizzi, E.; Gastaldi, G. Comparison of hygiene levels in metal-ceramic and stratified zirconia in prosthetic rehabilitation on teeth and implants: A retrospective clinical study of a three-year follow-up. J. Biol. Regul. Homeost. Agents 2021, 35, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Grusovin, M.G.; Coulthard, P.; Worthington, H.V.; George, P.; Esposito, M. Interventions for replacing missing teeth: Maintaining and recovering soft tissue health around dental implants. Cochrane Database Syst. Rev. 2010, 2010, CD003069. [Google Scholar] [CrossRef]
- Matsubara, V.H.; Leong, B.W.; Leong, M.J.L.; Lawrence, Z.; Becker, T.; Quaranta, A. Cleaning potential of different air abrasive powders and their impact on implant surface roughness. Clin. Implant Dent. Relat. Res. 2020, 22, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Francis, S.; Iaculli, F.; Perrotti, V.; Piattelli, A.; Quaranta, A. Titanium Surface Decontamination: A Systematic Review of In Vitro Comparative Studies. Int. J. Oral Maxillofac. Implants 2022, 37, 76–84. [Google Scholar] [CrossRef]
- Moharrami, M.; Perrotti, V.; Iaculli, F.; Love, R.M.; Quaranta, A. Effects of air abrasive decontamination on titanium surfaces: A systematic review of in vitro studies. Clin. Impl. Dent. Relat. Res. 2019, 21, 398–421. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Grusovin, M.G.; Worthington, H.V. Interventions for replacing missing teeth: Treatment of peri-implantitis. Cochrane Database Syst. Rev. 2012, 1, CD004970. [Google Scholar] [CrossRef]
- Petersilka, G.J. Subgingival air-polishing in the treatment of periodontal biofilm infections. Periodontol. 2000 2011, 55, 124–142. [Google Scholar] [CrossRef]
- Duarte, P.M.; Reis, A.F.; de Freitas, P.M.; Ota-Tsuzuki, C. Bacterial adhesion on smooth and rough titanium surfaces after treatment with different instruments. J. Periodontol. 2009, 80, 1824–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flemmig, T.F.; Arushanov, D.; Daubert, D.; Rothen, M.; Mueller, G.; Leroux, B.G. Randomized controlled trial assessing efficacy and safety of glycine powder air polishing in moderate-to-deep periodontal pockets. J. Periodontol. 2012, 83, 444–452. [Google Scholar] [CrossRef]
- Nemer Vieira, L.F.; Lopes de Chaves e Mello Dias, E.C.; Cardoso, E.S.; Machado, S.J.; Pereira da Silva, C.; Vidigal, G.M., Jr. Effectiveness of implant surface decontamination using a high-pressure sodium bicarbonate protocol: An in vitro study. Implant Dent. 2012, 21, 390–393. [Google Scholar] [CrossRef]
- Pereira da Silva, C.H.; Vidigal, G.M., Jr.; de Uzeda, M.; de Almeida Soares, G. Influence of titanium surface roughness on attachment of Streptococcus sanguis: An in vitro study. Implant Dent. 2005, 14, 88–93. [Google Scholar] [CrossRef]
- John, G.; Becker, J.; Schwarz, F. Effectivity of air-abrasive powder based on glycine and tricalcium phosphate in removal of initial biofilm on titanium and zirconium oxide surfaces in an ex vivo model. Clin. Oral Investig. 2016, 20, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Tastepe, C.S.; Lin, X.; Werner, A.; Donnet, M.; Wismeijer, D.; Liu, Y. Cleaning effect of osteoconductive powder abrasive treatment on explanted human implants and biofilm-coated titanium discs. Clin. Exp. Dent. Res. 2018, 4, 25–34. [Google Scholar] [CrossRef]
- Moon, H.J.; Jeya, M.; Kim, I.W.; Lee, J.K. Biotechnological production of erythritol and its applications. Appl. Microbiol. Biotechnol. 2010, 86, 1017–1025. [Google Scholar] [CrossRef]
- Hägi, T.T.; Hofmänner, P.; Salvi, G.E.; Ramseier, C.A.; Sculean, A. Clinical outcomes following subgingival application of a novel erythritol powder by means of air polishing in supportive periodontal therapy: A randomized, controlled clinical study. Quintessence Int. 2013, 44, 753–761. [Google Scholar] [CrossRef]
- Hashino, E.; Kuboniwa, M.; Alghamdi, S.A.; Yamaguchi, M.; Yamamoto, R.; Cho, H.; Amano, A. Erythritol alters microstructure and metabolomic profiles of biofilm composed of Streptococcus gordonii and Porphyromonas gingivalis. Mol. Oral Microbiol. 2013, 28, 435–451. [Google Scholar] [CrossRef] [PubMed]
- Sahrmann, P.; Ronay, V.; Hofer, D.; Attin, T.; Jung, R.E.; Schmidlin, P.R. In vitro cleaning potential of three different implant debridement methods. Clin. Oral Implants Res. 2015, 26, 314–319. [Google Scholar] [CrossRef]
- Bühler, J.; Schmidli, F.; Weiger, R.; Walter, C. Analysis of the effects of air polishing powders containing sodium bicarbonate and glycine on human teeth. Clin. Oral Investig. 2015, 19, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Tuchscheerer, V.; Eickholz, P.; Dannewitz, B.; Ratka, C.; Zuhr, O.; Petsos, H. In vitro surgical and non-surgical air-polishing efficacy for implant surface decontamination in three different defect configurations. Clin. Oral Investig. 2021, 25, 1743–1754. [Google Scholar] [CrossRef] [PubMed]
- Sawai, M.A.; Bhardwaj, A.; Jafri, Z.; Sultan, N.; Daing, A. Tooth polishing: The current status. J. Indian Soc. Periodontol. 2015, 19, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Nakazato, G.; Tsuchiya, H.; Sato, M.; Yamauchi, M. In vivo plaque formation on implant materials. Int. J. Oral Maxillofac. Implants 1989, 4, 321–326. [Google Scholar] [PubMed]
- Wolinsky, L.E.; de Camargo, P.M.; Erard, J.C.; Newman, M.G. A study of in vitro attachment of Streptococcus sanguis and Actinomyces viscosus to saliva-treated titanium. Int. J. Oral Maxillofac. Implants 1989, 4, 27–31. [Google Scholar]
- Quintero, D.G.; Taylor, R.B.; Miller, M.B.; Merchant, K.R.; Pasieta, S.A. Air-Abrasive Disinfection of Implant Surfaces in a Simulated Model of Periimplantitis. Implant Dent. 2017, 26, 423–428. [Google Scholar] [CrossRef]
- Menini, M.; Piccardo, P.; Baldi, D.; Dellepiane, E.; Pera, P. Morphological and chemical characteristics of different titanium surfaces treated by bicarbonate and glycine powder air abrasive systems. Implant Dent. 2015, 24, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Ronay, V.; Merlini, A.; Attin, T.; Schmidlin, P.R.; Sahrmann, P. In vitro cleaning potential of three implant debridement methods. Simulation of the non-surgical approach. Clin. Oral Implants Res. 2017, 28, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Toma, S.; Lasserre, J.; Brecx, M.C.; Nyssen-Behets, C. In vitro evaluation of peri-implantitis treatment modalities on Saos-2osteoblasts. Clin. Oral Implants Res. 2016, 27, 1085–1092. [Google Scholar] [CrossRef]
- Kister, F.; Specht, O.; Warkentin, M.; Geis-Gerstorfer, J.; Rupp, F. Peri-implantitis cleaning instrumentation influences the integrity of photoactive nanocoatings. Dent. Mater. 2017, 33, e69–e78. [Google Scholar] [CrossRef] [PubMed]
- Kreisler, M.; Kohnen, W.; Christoffers, A.B.; Götz, H.; Jansen, B.; Duschner, H.; d’Hoedt, B. In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er: YAG laser and an air powder system. Clin. Oral Implants Res. 2005, 16, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Cafiero, C.; Aglietta, M.; Iorio-Siciliano, V.; Salvi, G.E.; Blasi, A.; Matarasso, S. Implant surface roughness alterations induced by different prophylactic procedures: An in vitro study. Clin. Oral Implants Res. 2017, 28, e16–e20. [Google Scholar] [CrossRef] [PubMed]
- Ramaglia, L.; di Lauro, A.E.; Morgese, F.; Squillace, A. Profilometric and standard error of the mean analysis of rough implant surfaces treated with different instrumentations. Implant Dent. 2006, 15, 77–82. [Google Scholar] [CrossRef]
- Barnes, C.M.; Fleming, L.S.; Mueninghoff, L.A. SEM evaluation of the in-vitro effects of an air-abrasive system on various implant surfaces. Int. J. Oral Maxillofac. Implants 1991, 6, 463–469. [Google Scholar]
- Chairay, J.P.; Boulekbache, H.; Jean, A.; Soyer, A.; Bouchard, P. Scanning electron microscopic evaluation of the effects of an air-abrasive system on dental implants: A comparative in vitro study between machined and plasma-sprayed titanium surfaces. J. Periodontol. 1997, 68, 1215–1222. [Google Scholar] [CrossRef]
- Koka, S.; Han, J.; Razzoog, M.E.; Bloem, T.J. The effects of two air-powder abrasive prophylaxis systems on the surface of machined titanium: A pilot study. Implant Dent. 1992, 1, 259–265. [Google Scholar] [CrossRef]
- Parham, P.L., Jr.; Cobb, C.M.; French, A.A.; Love, J.W.; Drisko, C.L.; Killoy, W.J. Effects of an air-powder abrasive system on plasma-sprayed titanium implant surfaces: An in vitro evaluation. J. Oral Implantol. 1989, 15, 78–86. [Google Scholar]
- Razzoog, M.E.; Koka, S. In vitro analysis of the effects of two air-abrasive prophylaxis systems and inlet air pressure on the surface of titanium abutment cylinders. J Prosthodont. 1994, 3, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, F.; Ferrari, D.; Popovski, K.; Hartig, B.; Becker, J. Influence of different air-abrasive powders on cell viability at biologically contaminated titanium dental implants surfaces. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 88, 83–91. [Google Scholar] [CrossRef]
- Tastepe, C.S.; Liu, Y.; Visscher, C.M.; Wismeijer, D. Cleaning and modification of intraorally contaminated titanium discs with calcium phosphate powder abrasive treatment. Clin. Oral Implants Res. 2013, 24, 1238–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, N.; Moëne, R.; Cancela, J.A.; Mombelli, A. Subgingival air-polishing with erythritol during periodontal maintenance: Randomized clinical trial of twelve months. J. Clin. Periodontol. 2014, 41, 883–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersilka, G.; Faggion, C.M., Jr.; Stratmann, U.; Gerss, J.; Ehmke, B.; Haeberlein, I.; Flemmig, T.F. Effect of glycine powder air-polishing on the gingiva. J. Clin. Periodontol. 2008, 35, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Bennani, V.; Hwang, L.; Tawse-Smith, A.; Dias, G.J.; Cannon, R.D. Effect of Air-Polishing on Titanium Surfaces, Biofilm Removal, and Biocompatibility: A Pilot Study. Biomed. Res. Int. 2015, 2015, 491047. [Google Scholar] [CrossRef] [Green Version]
- Homiak, A.W.; Cook, P.A.; DeBoer, J. Effect of hygiene instrumentation on titanium abutments: A scanning electron microscopy study. J. Prosthet. Dent. 1992, 67, 364–369. [Google Scholar] [CrossRef]
- Socransky, S.S.; Haffajee, A.D.; Cugini, M.A.; Smith, C.; Kent, R.L., Jr. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 1998, 25, 134–144. [Google Scholar] [CrossRef]
Treatments | Machined Discs | Moderately Rough Surface | ||
---|---|---|---|---|
RMS Means ± S.D. | Ra Means ± S.D. | RMS Means ± S.D. | Ra Means ± S.D. | |
Group 1—before treatment | 1.40 ± 0.31 | 1.10 ± 0.23 | 3.22 ± 0.21 | 2.45 ± 0.35 |
Group 1—after treatment | 1.60 ± 0.34 | 1.30 ± 0.22 | 3.01 ± 0.46 | 2.30 ± 0.45 |
Group 2—before treatment | 3.01 ± 0.44 | 2.47 ± 0.31 | 2.52 ± 0.40 | 1.95 ± 0.41 |
Group 2—after treatment | 3.14 ± 0.29 | 2.60 ± 0.35 | 2.55 ± 0.37 | 1.99 ± 0.22 |
Group 3—before treatment | 2.01 ± 0.30 | 1.61 ± 0.33 | 2.44 ± 0.47 | 1.89 ± 0.21 |
Group 3—after treatment | 2.04 ± 0.37 | 1.67 ± 0.32 | 2.42 ± 0.39 | 1.88 ± 0.38 |
Group 4—before treatment | 2.04 ± 0.29 | 1.57 ± 0.41 | 2.73 ± 0.18 | 2.13 ± 0.23 |
Group 4—after treatment | 2.14 ± 0.37 | 1.70 ± 0.3 | 2.77 ± 0.32 | 2.17 ± 0.25 |
Group 5—before treatment | 2.30 ± 0.44 | 1.86 ± 0.43 | 3.38 ± 0.25 | 2.57 ± 0.15 |
Group 5—after treatment | 2.49 ± 0.37 | 2.02 ± 0.39 | 3.40 ± 0.31 | 2.59 ± 0.21 |
Group 6—before treatment | 2.75 ± 0.21 | 2.22 ± 0.26 | 2.71 ± 0.28 | 2.10 ± 0.39 |
Group 6—after treatment | 2.60 ± 0.29 | 2.10 ± 0.33 | 2.48 ± 0.41) | 1.96 ± 0.15 |
Group 7—before treatment | 1.72 ± 0.42 | 1.07 ± 0.31 | 3.19 ± 0.37 | 2.42 ± 0.22 |
Group 7—after treatment | 1.60 ± 0.39 | 0.93 ± 0.37 | 2.96 ± 0.33 | 2.23 ± 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francis, S.; Caponio, V.C.A.; Spirito, F.; Perrotti, V.; Quaranta, A. Microbiological and Physical Changes Produced by Different Air–Powders on Contaminated Titanium Implant Surfaces: An In Vitro Pilot Study. Appl. Sci. 2023, 13, 1301. https://doi.org/10.3390/app13031301
Francis S, Caponio VCA, Spirito F, Perrotti V, Quaranta A. Microbiological and Physical Changes Produced by Different Air–Powders on Contaminated Titanium Implant Surfaces: An In Vitro Pilot Study. Applied Sciences. 2023; 13(3):1301. https://doi.org/10.3390/app13031301
Chicago/Turabian StyleFrancis, Samy, Vito Carlo Alberto Caponio, Francesca Spirito, Vittoria Perrotti, and Alessandro Quaranta. 2023. "Microbiological and Physical Changes Produced by Different Air–Powders on Contaminated Titanium Implant Surfaces: An In Vitro Pilot Study" Applied Sciences 13, no. 3: 1301. https://doi.org/10.3390/app13031301
APA StyleFrancis, S., Caponio, V. C. A., Spirito, F., Perrotti, V., & Quaranta, A. (2023). Microbiological and Physical Changes Produced by Different Air–Powders on Contaminated Titanium Implant Surfaces: An In Vitro Pilot Study. Applied Sciences, 13(3), 1301. https://doi.org/10.3390/app13031301