Engineering Properties and Environmental Impact of Soil Mixing with Steel Slag Applied in Subgrade
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Raw Materials
2.1.1. Soil
2.1.2. Steel Slag
2.1.3. Specimen Preparation
2.2. Experimental Methods
2.2.1. Determination of Optimum Proportion (SL/S) between SL and Intact Soil
2.2.2. Mechanical Properties and Deformation Stability of Soils
2.2.3. Environmental Impact Assessment Methods
3. Results and Discussion
3.1. Determination of Optimum Proportion (SL/S) between SL and Intact Soil
3.1.1. Compaction Test
3.1.2. Liquid-Plastic Limit Combined Measurement Test
3.1.3. CBR Test
3.2. Mechanical Properties and Deformation Stability of Soils
3.2.1. Static Triaxial Test
3.2.2. Dynamic Modulus Test
3.2.3. Volume Stability Test
3.3. Environmental Impact Assessment Methods
3.3.1. Composition Analysis of Infiltration Fluid
3.3.2. Permeability Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shu, K.; Sasaki, K. Occurrence of steel converter slag and its high value-added conversion for environmental restoration in China: A review. J. Clean. Prod. 2022, 373, 133876. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Yan, X.; Tu, C.; Yu, Z. Environmental risks for application of iron and steel slags in soils in China: A review. Pedosphere 2021, 31, 28–42. [Google Scholar] [CrossRef]
- Guo, J.; Bao, Y.; Wang, M. Steel slag in China: Treatment, recycling, and management. Waste Manag. 2018, 78, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Chen, H.; Wang, J.; Feng, Q. Preliminary investigation on the pozzolanic activity of superfine steel slag. Constr. Build. Mater. 2015, 82, 227–234. [Google Scholar] [CrossRef]
- Wang, K.; Qian, C.; Wang, R. The properties and mechanism of microbial mineralized steel slag bricks. Constr. Build. Mater. 2016, 113, 815–823. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Ren, K.; Liu, C. Experimental research on steel slag stabilized soil and its application in subgrade engineering. Geotech. Geol. Eng. 2020, 38, 4603–4615. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, D.; Miao, Y.; Sani, B.M.; Zhang, K. Development and characterization of a novel steel slag-based composite phase change aggregate for snow/ice melting of asphalt pavements. Constr. Build. Mater. 2022, 341, 127769. [Google Scholar] [CrossRef]
- Xie, J.; Wu, S.; Zhang, L.; Xiao, Y.; Ding, W. Evaluation the deleterious potential and heating characteristics of basic oxygen furnace slag based on laboratory and in-place investigation during large-scale reutilization. J. Clean. Prod. 2016, 133, 78–87. [Google Scholar] [CrossRef]
- Sorlini, S.; Sanzeni, A.; Rondi, L. Reuse of steel slag in bituminous paving mixtures. J. Hazard. Mater. 2012, 209, 84–91. [Google Scholar] [CrossRef]
- Ahmedzade, P.; Sengoz, B. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. J. Hazard. Mater. 2009, 165, 300–305. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, G.; Tighe, S.; Chen, M.; Wu, S.; Adhikari, S.; Gao, Y. Quantitative comparison of surface and interface adhesive properties of fine aggregate asphalt mixtures composed of basalt, steel slag, and andesite. Constr. Build. Mater. 2020, 246, 118507. [Google Scholar] [CrossRef]
- Chen, Z.; Xie, J.; Xiao, Y.; Chen, J.; Wu, S. Characteristics of bonding behavior between basic oxygen furnace slag and asphalt binder. Constr. Build. Mater. 2014, 64, 60–66. [Google Scholar] [CrossRef]
- Pasetto, M.; Baliello, A.; Giacomello, G.; Pasquini, E. Sustainable solutions for road pavements: A multi-scale characterization of warm mix asphalts containing steel slags. J. Clean. Prod. 2017, 166, 835–843. [Google Scholar] [CrossRef]
- Yaghoubi, E.; Yaghoubi, M.; Guerrieri, M.; Sudarsanan, N. Improving expansive clay subgrades using recycled glass: Resilient modulus characteristics and pavement performance. Constr. Build. Mater. 2021, 302, 124384. [Google Scholar] [CrossRef]
- Mirzababaei, M.; Miraftab, M.; Mohamed, M.; McMahon, P. Unconfined compression strength of reinforced clays with carpet waste fibers. J. Geotech. Geoenviron. 2013, 139, 483–493. [Google Scholar] [CrossRef]
- Li, W.; Lang, L.; Lin, Z.; Wang, Z.; Zhang, F. Characteristics of dry shrinkage and temperature shrinkage of cement-stabilized steel slag. Constr. Build. Mater. 2017, 134, 540–548. [Google Scholar] [CrossRef]
- Liu, J.; Yu, B.; Wang, Q. Application of steel slag in cement treated aggregate base course. J. Clean. Prod. 2020, 269, 121733. [Google Scholar] [CrossRef]
- Li, Q.; Li, B.; Li, X.; He, Z.; Zhang, P. Microstructure of pretreated steel slag and its influence on mechanical properties of cement stabilized mixture. Constr. Build. Mater. 2022, 317, 125799. [Google Scholar] [CrossRef]
- Gao, B.; Yang, C.; Zou, Y.; Wang, F.; Zhou, X.; Barbieri, D.M.; Wu, S. Compaction procedures and associated environmental impacts analysis for application of steel slag in road base layer. Sustainability 2021, 13, 4396. [Google Scholar] [CrossRef]
- Yildirim, I.Z.; Prezzi, M. Subgrade stabilisation mixtures with eaf steel slag: An experimental study followed by field implementation. Int. J. Pavement Eng. 2022, 23, 1754–1767. [Google Scholar] [CrossRef]
- Ma, Y.; Luo, Y.; Ma, H.; Zhou, X.; Luo, Z. Upcycling steel slag in producing eco-efficient iron-calcium phosphate cement. J. Clean. Prod. 2022, 371, 133688. [Google Scholar] [CrossRef]
- Tian, E.; Liu, Y.; Cheng, X.; Zeng, W. Characteristics of pavement cement concrete incorporating steel slag powder. Adv. Mater. Sci. Eng. 2022, 2022, 6360301. [Google Scholar] [CrossRef]
- Zhang, S.; Ghouleh, Z.; Mucci, A.; Bahn, O.; Provencal, R.; Shao, Y. Production of cleaner high-strength cementing material using steel slag under elevated-temperature carbonation. J. Clean. Prod. 2022, 342, 130948. [Google Scholar] [CrossRef]
- Gu, X.; Yu, B.; Dong, Q.; Deng, Y. Application of secondary steel slag in subgrade: Performance evaluation and enhancement. J. Clean. Prod. 2018, 181, 102–108. [Google Scholar] [CrossRef]
- Aldeeky, H.; Al Hattamleh, O. Experimental study on the utilization of fine steel slag on stabilizing high plastic subgrade soil. Adv. Civ. Eng. 2017, 2017, 9230279. [Google Scholar] [CrossRef]
- Kua, T.-A.; Arulrajah, A.; Horpibulsuk, S.; Du, Y.-J.; Shen, S.-L. Strength assessment of spent coffee grounds-geopolymer cement utilizing slag and fly ash precursors. Constr. Build. Mater. 2016, 115, 565–575. [Google Scholar] [CrossRef]
- Wu, Y.; Qiao, X.; Yu, X.; Yu, J.; Deng, Y. Study on properties of expansive soil improved by steel slag powder and cement under freeze-thaw cycles. KSCE J. Civ. Eng. 2021, 25, 417–428. [Google Scholar] [CrossRef]
- Cui, C.; Yu, C.; Zhao, J.; Zheng, J. Steel slag/precarbonated steel slag as a partial substitute for Portland cement: Effect on the mechanical properties and microstructure of stabilized soils. KSCE J. Civ. Eng. 2022, 26, 3803–3814. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, K.; Yu, J.; Han, T.; Li, D. Research on strength degradation of soil solidified by steel slag powder and cement in seawater erosion. J. Mater. Civil Eng. 2020, 32, 04020181. [Google Scholar] [CrossRef]
- Wei, H.B.; Zhang, Y.P.; Cui, J.H.; Han, L.L.; Li, Z.Q. Engineering and environmental evaluation of silty clay modified by waste fly ash and oil shale ash as a road subgrade material. Constr. Build. Mater. 2019, 196, 204–213. [Google Scholar] [CrossRef]
- Saglam, S.; Bakir, B.S. Cyclic response of saturated silts. Soil Dyn. Earthq. Eng. 2014, 61–62, 164–175. [Google Scholar] [CrossRef]
- Zhang, E.; Wang, X.; Wang, W.; Wang, H. Mechanical properties, durability and leaching toxicity of cement-stabilized macadam incorporating reclaimed clay bricks as fine aggregate. Sustainability 2022, 14, 8432. [Google Scholar] [CrossRef]
- Jiang, P.; Chen, Y.W.; Wang, W.S.; Yang, J.D.; Wang, H.Y.; Li, N.; Wang, W. Flexural behavior evaluation and energy dissipation mechanisms of modified iron tailings powder incorporating cement and fibers subjected to freeze-thaw cycles. J. Clean. Prod. 2022, 351, 131527. [Google Scholar] [CrossRef]
- Nguyen, V.; Pineda, J.A.; Romero, E.; Sheng, D. Influence of soil microstructure on air permeability in compacted clay. Geotechnique 2021, 71, 373–391. [Google Scholar] [CrossRef]
- Huang, X.; Horn, R.; Ren, T. Soil structure effects on deformation, pore water pressure, and consequences for air permeability during compaction and subsequent shearing. Geoderma 2022, 406, 115452. [Google Scholar] [CrossRef]
No. | Element | Standard | Instrument | Detection limit |
---|---|---|---|---|
1 | Cadmium | HJ 787-2016 | GGX-810 | 0.9 μg/L |
2 | Lead | 0.6 μg/L | ||
3 | Zinc | HJ 786-2016 | GGX-810 | 0.06 mg/L |
4 | Arsenic | HJ 702-2014 | AFS-8520 | 0.10 μg/L |
5 | Mercury | 0.02 μg/L | ||
6 | Selenium | 0.10 μg/L | ||
7 | Copper | HJ 751-2015 | GGX-810 | 0.02 mg/L |
8 | Nickel | 0.03 mg/L | ||
9 | Total chromium | HJ 749-2015 | GGX-810 | 0.03 mg/L |
10 | Hexavalent chromium | GB/T 15555.4-1995 | T6 | 0.004 mg/L |
11 | Barium | GB 5085.3-2007 | GGX-810 | 0.1 mg/L |
Sample Type | SL Content (%) | Liquid Limit Water Content (%) | Plastic Limit Water Content (%) | Plasticity Index |
---|---|---|---|---|
S1 | 0 | 43.7 | 31.5 | 12.2 |
30 | 38.1 | 26.5 | 11.6 | |
50 | 36.0 | 25.2 | 10.8 | |
70 | 25.2 | 19.1 | 6.1 | |
S2 | 0 | 59.6 | 27.7 | 31.9 |
30 | 43.7 | 26.7 | 17.0 | |
50 | 34.4 | 24.9 | 9.4 | |
70 | 29.3 | 20.0 | 9.3 |
Strength Parameters | S2 | SSL | SSLC |
---|---|---|---|
Cohesion (c) (kPa) | 42.24 | 50.77 | 128.06 |
friction angle (φ) (°) | 25.27 | 42.14 | 48.5 |
Types | Parameters | |||
---|---|---|---|---|
A | B | R2 | Emax (MPa) | |
S | 4.5394 | 0.00846 | 97.89 | 118.20 |
SSL | 3.4846 | 0.00710 | 98.48 | 140.85 |
SSLC | 1.6921 | 0.00391 | 98.74 | 255.75 |
Element | Samples | Surface Water | Ground Water | Detection Limit | ||||
---|---|---|---|---|---|---|---|---|
SL | SSL | SSLC | Class I | Class I | Class II | Class III | ||
Cadmium | <0.9 | <0.9 | <0.9 | 1 | 0.1 | 1 | 5 | 0.9 μg/L |
Lead | <0.6 | <0.6 | <0.6 | 10 | 5 | 5 | 10 | 0.6 μg/L |
Zinc | <0.05 | <0.05 | <0.05 | 0.05 | 0.05 | 0.5 | 1 | 0.06 mg/L |
Arsenic | <0.10 | 0.62 | 0.54 | 50 | 1 | 1 | 10 | 0.10 μg/L |
Mercury | <0.02 | <0.02 | <0.02 | 0.05 | 0.1 | 0.1 | 1 | 0.02 μg/L |
Selenium | <0.10 | 0.54 | 0.46 | 10 | 10 | 10 | 10 | 0.10 μg/L |
Copper | <0.01 | <0.01 | <0.01 | 0.01 | 0.01 | 0.05 | 1 | 0.02 mg/L |
Nickel | <0.03 | <0.03 | <0.03 | - | 0.002 | 0.002 | 0.02 | 0.03 mg/L |
Total chromium | <0.03 | <0.03 | <0.03 | 0.01 | 0.005 | 0.01 | 0.05 | 0.03 mg/L |
Hexavalent chromium | <0.004 | 0.009 | 0.008 | 0.01 | 0.005 | 0.01 | 0.05 | 0.004 mg/L |
Barium | <0.1 | <0.1 | <0.1 | 0.7 | 0.01 | 0.1 | 0.7 | 0.1 mg/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Jiang, T.; Li, S.; Wang, W. Engineering Properties and Environmental Impact of Soil Mixing with Steel Slag Applied in Subgrade. Appl. Sci. 2023, 13, 1574. https://doi.org/10.3390/app13031574
Zhang Y, Jiang T, Li S, Wang W. Engineering Properties and Environmental Impact of Soil Mixing with Steel Slag Applied in Subgrade. Applied Sciences. 2023; 13(3):1574. https://doi.org/10.3390/app13031574
Chicago/Turabian StyleZhang, Yangpeng, Tinghui Jiang, Shuyang Li, and Wensheng Wang. 2023. "Engineering Properties and Environmental Impact of Soil Mixing with Steel Slag Applied in Subgrade" Applied Sciences 13, no. 3: 1574. https://doi.org/10.3390/app13031574
APA StyleZhang, Y., Jiang, T., Li, S., & Wang, W. (2023). Engineering Properties and Environmental Impact of Soil Mixing with Steel Slag Applied in Subgrade. Applied Sciences, 13(3), 1574. https://doi.org/10.3390/app13031574