Teflon Coating and Anti-Escape Ring Improve Trapping Efficiency of the Longhorn Beetle, Monochamus alternatus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trapping Materials
2.2. Field Tests
2.2.1. Teflon Concentration Study
2.2.2. Test of the Possible Decrease in Fluon Trapping Efficiency with Time
2.2.3. Anti-Escape Ring Study
2.3. Data Analysis
3. Results
3.1. Effect of Teflon Concentration on Trapping Efficiency
3.2. Test of the Possible Decrease in Fluon Trapping Efficiency with Time
3.3. Effect of Anti-Escape Ring on Trapping Efficiency
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akbulut, S.; Stamps, W.T. Insect vectors of the pinewood nematode: A review of the biology and ecology of Monochamus species. For. Pathol. 2011, 42, 89–99. [Google Scholar] [CrossRef]
- Wingfield, M.J.; Blanchette, R.A.; Nicholls, T.H.; Robbins, K. The pine wood nematode: A comparison of the situation in the United States and Japan. Can. J. For. Res. 1982, 12, 71–75. [Google Scholar] [CrossRef]
- Han, Z.M.; Hong, Y.D.; Zhao, B.G. A study on pathogenicity of bacteria carried by pine wood nematodes. J. Phytopatholo. 2003, 151, 683–689. [Google Scholar] [CrossRef]
- Zhao, B.G. Pine Wilt Disease; Springer: Berlin/Heidelberg, Germany, 2008; pp. 18–25. [Google Scholar]
- Bergdahl, D.R. Impact of pinewood nematode in North America: Present and future. J. Nematol. 1988, 20, 260. [Google Scholar] [PubMed]
- Tanaka, S.E.; Dayi, M.; Maeda, Y.; Tsai, I.J.; Tanaka, R.; Bligh, M.; Kaneko, T.K.; Fukuda, K.; Kanzaki, N.; Kikuchi, T. Stage-specific transcriptome of Bursaphelenchus xylophilus reveals temporal regulation of effector genes and roles of the dauer-like stages in the lifecycle. Scientific Rep. 2019, 9, 946–961. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, T.; Shibuya, H.; Aikawa, T.; Jones, J.T. Cloning and characterization of pectate lyases expressed in the esophageal gland of the pine wood nematode Bursaphelenchus xylophilus. Mol. Plant-Microbe Interact. MPMI 2006, 19, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, T.; Li, H.; Karim, N.; Kennedy, M.; Moens, M.; Jones, J.T. Identification of putative expansin-like genes from the pine wood nematode, Bursaphelenchus xylophilus and evolution of the expansin gene family within the Nematoda. Nematology 2009, 11, 355–364. [Google Scholar]
- Kikuchi, T.; Cotton, J.A.; Dalzell, J.J.; Hasegawa, K.; Kanzaki, N.; McVeigh, P.; Takanashi, T.; Tsai, I.J.; Assefa, S.A.; Cock, P.J.; et al. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog. 2011, 7, 1002219. [Google Scholar] [CrossRef] [Green Version]
- Espada, M.; Silva, A.C.; Eves van den Akker, S.; Cock, P.J.; Mota, M.; Jones, J.T. Identification and characterization of parasitism genes from the pinewood nematode Bursaphelenchus xylophilus reveals a multilayered detoxification strategy. Mol. Plant. Pathol. 2016, 17, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Kyoko, I.A.; Taizo, H. Role of resin canals in the early stages of pine wilt disease caused by the pine wood nematode. NRC Res. Press Ott. Can. 1997, 75, 346–351. [Google Scholar]
- Linit, M. Nemtaode-vector relationships in the pine wilt disease system. J. Nematol. 1988, 20, 227. [Google Scholar] [PubMed]
- Wang, Y.P.; Guo, R.; Deng, J.Y. Field efficacy of combinations of attractants for bark beetles and longicorn beetles in trapping wood-boring beetles. Acta Entomol. Sin. 2013, 56, 452–456. [Google Scholar]
- Yuan, P.Y.; Qian, C.Y.; Hu, K.Y.; Lin, N.; Wang, D.S.; Wang, S.; Wen, X.J.; Ma, T. Discussion on field application technology of Coleoptera insect traps. Chin. J. Biol. Control. 2022, 38, 1334–1344. [Google Scholar] [CrossRef]
- Barbour, J.D.; Millar, J.G.; Rodstein, J.; Ray, A.M.; Alston, D.G.; Rejzek, M.; Dutcher, J.D.; Hanks, L.M. Synthetic 3,5-dimethyldodecanoic acid serves as a general attractant for multiple species of Prionus (Coleoptera: Celoptera: Cerambycidae). Ann. Entomol. Soc. Am. 2011, 104, 588–593. [Google Scholar] [CrossRef] [Green Version]
- Sitrom, B.L.; Goyer, R.A. Efiect of siliouette color on frap catches of Dendroctonus frontalis (Coleoptera.Scolytidae). Ann. Entomol. Soc. Am. 2011, 94, 948–953. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.M.; Dai, Y.M.; Chen, X.M.; Yang, Z.X.; Chen, F.; Sun, B.G. Visual selection of adult Monochamus alternatus to host colors. J. Environ. Entomol. 2021, 34, 236–239. [Google Scholar]
- Allison, J.D.; Redak, R.A. The Impact of Trap Type and Design Features on Survey and Detection of Bark and Woodboring Beetles and Their Associates: A Review and Meta-Analysis. Annu. Rev. Entomol. 2017, 31, 127–146. [Google Scholar] [CrossRef]
- McIntosh, R.L.; Katinic, P.J.; Allison, J.D.; Borden, J.H.; Downey, D.L. Comparative efficacy of five types of trap for woodborers in the Cerambycidae, Buprestidae and Siricidae. Agric. For. Entomol. 2001, 3, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Lin, Q.; Li, J.N.; Wang, B.D.; Zhang, F.P. Comparison of efficacies for Monochamus alternatus adult caught by panel traps baited with APF-Ⅰ chemical attractant placed at different field positions. J. Fujin College For. 2014, 34, 11–14. [Google Scholar]
- Allison, J.D.; Johnson, C.W.; Meeker, J.R.; Strom, B.L.; Butler, S.M. Effect of Aerosol Surface Lubricants on the Abundance and Richness of Selected Forest Insects Captured in Multiple-Funnel and Panel Traps. J. Econ. Entomol. 2011, 104, 1258–1264. [Google Scholar] [CrossRef]
- Giampietro, F.; Rolf, M.; Maria, P.C.; Luca, E.; Dario, A.; Giorgio, C. The effect of Teflon coating on the resistance to sliding of orthodontic archwires. Eur. J. Orthodont. 2012, 34, 410–417. [Google Scholar]
- Graham, E.E.; Mitchell, R.F.; Reagel, P.F.; Barbour, J.D.; Millar, J.G.; Hanks, L.M. Treating panel traps with a fluoropolymer enhances their efficiency in capturing cerambycid beetles. J. Econ. Entomol. 2010, 103, 641–647. [Google Scholar] [CrossRef] [PubMed]
- de Groot, P.; Nott, R.W. Response of Monochamus (Col., Cerambycidae) and some Buprestidae to flight intercept traps. J. Appl. Entomol. 2003, 127, 548–552. [Google Scholar] [CrossRef]
- Allison, J.D.; Graham, E.E.; Poland, T.M.; Strom, B.L. Dilution of Fluon before trap surface treatment has no effect on longhorned beetle (Coleoptera: Cerambycidae) captures. J. Econ. Entomol. 2016, 109, 1215–1219. [Google Scholar] [CrossRef] [Green Version]
- Graham, E.E.; Poland, T.M. Efficacy of fluon conditioning for capturing cerambycid beetles in different trap designs and persistence on panel traps over time. J. Econ. Entomol. 2012, 105, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, G.; Etxebeste, I.; Gallego, D.; David, G.; Bonifacio, L.; Jactel, H.; Sousa, E.; Pajares, J.A. Optimization of traps for live trapping of Pine Wood Nematode vector Monochamus galloprovincialis. J. Appl. Entomol. 2014, 6, 106–110. [Google Scholar] [CrossRef]
- Schroeder, M. Strategies for detection and delimita-tion surveys of the pine wood nematode in Sweden. Swed. Board Agrie 2012, 4, 36. [Google Scholar]
- Lee, H.R.; Lee, S.C.; Lee, D.H.; Jung, M.h.; Kwon, J.H.; Huh, M.J.; Kim, D.S.; Lee, J.E.; Park, I.K. Identification of Aggregation-Sex Pheromone of the Korean Monochamus alternatus (Coleoptera: Cerambycidae) Population, the Main Vector of Pine Wood Nematode. J. Econ. Entomol. 2018, 111, 1768–1774. [Google Scholar] [CrossRef]
- Sugimoto, H.; Togashi, K. Canopy-related adult density and sex-related flight activity of Monochamus alternatus (Coleoptera: Cerambycidae) in pine stands. App. Entomol. Zoolo. 2013, 48, 213–221. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Song, S.H.; Huang, H.H. Study on trapping beetles such as Pine beetle with attractant. For. Res. 1992, 5, 478–482. [Google Scholar]
- Sweeney, J.; Hughes, C.; Webster, V.; Kostanowicz, C.; Webster, R.; Mayo, P.; Allison, J.D. Impact of horizontal edge-interior and vertical canopy-understory gradients on the abundance and diversity of bark and woodboring beetles in survey traps. Insects 2020, 11, 573. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Lin, N.; Zhou, L.L.; Shi, X.H.; Zhou, Q.H.; Wang, C.; Sun, Z.H.; Chen, X.G.; He, Y.R.; Wen, X.J. Research progress and application prospect of insect sex pheromone mating disruption. For. Res. 2018, 31, 172–182. [Google Scholar]
- Czokajlo, D.; Ross, D.; Kirsch, P. Intercept panel trap, a novel trap for monitoring forest Coleoptera. J. For. Sci. 2001, 47, 63–65. [Google Scholar]
- Lindgren, B.S. A multiple funnel trap for scolytid beetles (Coleoptera). Can. Entomol. 1983, 115, 299–302. [Google Scholar] [CrossRef]
- De Groot, P.; Nott, R. Evaluation of traps of six different designs to capture pine sawyer beetles (Coleoptera: Cerambycidae). Agric. For. Entomol. 2001, 3, 107–111. [Google Scholar] [CrossRef]
- Miller, R.D.; Crowe, C.M. Relative performance of Lindgren multiple-funnel, intercept panel, and colossus pipe traps in catching Cerambycidae and associated species in the Southeastern United States. J. Econ. Entomol. 2011, 104, 1934–1941. [Google Scholar] [CrossRef] [PubMed]
- Graham, E.E.; Poland, T.M.; McCullough, D.G.; Millar, J.G. A comparison of trap type and height for capturing cerambycid beetles (Coleoptera). J. Econ. Entomol. 2012, 105, 837–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, A.F.; Michael, L.R.; Victor, C.M. Optimization of Multifunnel Traps for Emerald Ash Borer (Coleoptera: Buprestidae): Influence of Size, Trap Coating, and Color. J. Econ. Entomol. 2013, 106, 2415–2423. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wei, X. Coated containers with reduced concentrations of Fluon to prevent ant escape. J. Entomol. Sci. 2007, 42, 119–121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Xie, P.; Zheng, K.; Gu, Y.; Fan, J. Teflon Coating and Anti-Escape Ring Improve Trapping Efficiency of the Longhorn Beetle, Monochamus alternatus. Appl. Sci. 2023, 13, 1664. https://doi.org/10.3390/app13031664
Dong Y, Xie P, Zheng K, Gu Y, Fan J. Teflon Coating and Anti-Escape Ring Improve Trapping Efficiency of the Longhorn Beetle, Monochamus alternatus. Applied Sciences. 2023; 13(3):1664. https://doi.org/10.3390/app13031664
Chicago/Turabian StyleDong, Yifan, Ping Xie, Kaiwen Zheng, Yutong Gu, and Jianting Fan. 2023. "Teflon Coating and Anti-Escape Ring Improve Trapping Efficiency of the Longhorn Beetle, Monochamus alternatus" Applied Sciences 13, no. 3: 1664. https://doi.org/10.3390/app13031664
APA StyleDong, Y., Xie, P., Zheng, K., Gu, Y., & Fan, J. (2023). Teflon Coating and Anti-Escape Ring Improve Trapping Efficiency of the Longhorn Beetle, Monochamus alternatus. Applied Sciences, 13(3), 1664. https://doi.org/10.3390/app13031664