Numerical and Experimental Investigation of Flexural Properties and Damage Behavior of CFRTP/Al Laminates with Different Stacking Sequence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Materials Preparation
2.2. Fabrication of Fiber Metal Laminates
2.3. Three-Point Flexural Experiments
3. Finite Element Modeling and Damage Criteria
3.1. Finite Element Model of Three-Point Bending of CARALL
3.2. Damage Model for CARALL
3.2.1. Damage Model for Aluminum Sheets
3.2.2. Damage Model for CFRP Layers
3.2.3. Damage Model for CFRP Layers
4. Result and Discussion
4.1. Influence of Stacked Structure on Flexural Properties
4.2. Failure Prediction and Damage Propagation Feature
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostapiuk, M.; Bienias, J.; Surowska, B. Analysis of the bending and failure of fiber metal laminates based on glass and carbon fibers. Sci. Eng. Compos. Mater. 2018, 25, 1095–1106. [Google Scholar] [CrossRef]
- Rajkumar, G.R.; Krishna, M.; Narasimhamurthy, H.N.; Keshavmurthy, Y.C.; Nataraj, J.R. Investigation of Tensile and Bending behavior of Aluminum based hybrid fiber metal laminates. Procedia Mater. Sci. 2014, 5, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Nassir, N.A.; Birch, R.S.; Cantwell, W.J.; Sierra, D.R.; Edwardson, S.P.; Dearden, G.; Guan, Z.W. Experimental and numerical characterization of titanium -based fibre metal laminates. Compos. Struct. 2020, 245, 112398. [Google Scholar] [CrossRef]
- Hu, Y.B.; Li, H.G.; Cai, L.; Zhu, J.P.; Pan, L.; Xu, J.; Tao, J. Preparation and properties of Fibre-Metal Laminates based on carbon fibre reinforced PMR polyimide. Compos. Part B Eng. 2015, 69, 587–591. [Google Scholar] [CrossRef]
- Li, H.; Xu, Y.; Hua, X.; Liu, C.; Tao, J. Bending failure mechanism and flexural properties of GLARE laminates with different stacking sequences. Compos. Struct. 2018, 187, 354–363. [Google Scholar] [CrossRef]
- Vermeeren, C. An historic overview of the development of fibre metal laminates. Appl. Compos. Mater. 2003, 10, 189–205. [Google Scholar] [CrossRef]
- Sinmazcelik, T.; Avcu, E.; Bora, M.O.; Coban, O. A review: Fibre metal laminates, background, bonding types and applied test methods. Mater. Des. 2011, 32, 3671–3685. [Google Scholar] [CrossRef]
- Kuhtz, M.; Buschner, N.; Henseler, T.; Hornig, A.; Klaerner, M.; Ullmann, M.; Jaeger, H.; Kroll, L.; Kawalla, R. An experimental study on the bending response of multi-layered fibre-metal-laminates. J. Compos. Mater. 2019, 53, 2579–2591. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.-C.; Wu, L.-Z.; Ma, L.; Xiong, J. Low velocity impact of carbon fiber aluminum laminates. Compos. Struct. 2015, 119, 757–766. [Google Scholar] [CrossRef]
- Vieira, L.M.G.; Dobah, Y.; dos Santos, J.C.; Panzera, T.H.; Rubio, J.C.C.; Scarpa, F. Impact Properties of Novel Natural Fibre Metal Laminated Composite Materials. Appl. Sci. 2022, 12, 1869. [Google Scholar] [CrossRef]
- Zhu, S.; Chai, G.B. Low-velocity impact response of fibre-metal laminates-Experimental and finite element analysis. Compos. Sci. Technol. 2012, 72, 1793–1802. [Google Scholar] [CrossRef]
- Bienias, J.; Jakubczak, P.; Dadej, K. Low-velocity impact resistance of aluminium glass laminates-Experimental and numerical investigation. Compos. Struct. 2016, 152, 339–348. [Google Scholar] [CrossRef]
- Yao, L.; Wang, C.; He, W.; Lu, S.; Xie, D. Influence of impactor shape on low-velocity impact behavior of fiber metal laminates combined numerical and experimental approaches. Thin Walled Struct. 2019, 145, 106399. [Google Scholar] [CrossRef]
- Sharma, A.P.; Khan, S.H.; Parameswaran, V. Experimental and numerical investigation on the uni-axial tensile response and failure of fiber metal laminates. Compos. Part B Eng. 2017, 125, 259–274. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, Y.; Huang, T.; Liao, B.; Zhang, D.; Li, C. Characterization of progressive damage behaviour and failure mechanisms of carbon fibre reinforced aluminium laminates under three-point bending. Thin. Walled Struct. 2019, 135, 494–506. [Google Scholar] [CrossRef]
- Dhaliwal, G.S.; Newaz, G.M. Compression after impact characteristics of carbon fiber reinforced aluminum laminates. Compos. Struct. 2017, 160, 1212–1224. [Google Scholar] [CrossRef]
- Serna Moreno, M.C.; Romero Gutierrez, A.; Martinez Vicente, J.L. Different response under tension and compression of unidirectional carbon fibre laminates in a three-point bending test. Compos. Struct. 2016, 136, 706–711. [Google Scholar] [CrossRef]
- Djabali, A.; Toubal, L.; Zitoune, R.; Rechak, S. An experimental investigation of the mechanical behavior and damage of thick laminated carbon/epoxy composite. Compos. Struct. 2018, 184, 178–190. [Google Scholar] [CrossRef]
- Dhaliwal, G.S.; Newaz, G.M. Experimental and numerical investigation of flexural behavior of hat sectioned aluminum/carbon fiber reinforced mixed material composite beam. Compos. Part B Eng. 2020, 182, 107642. [Google Scholar] [CrossRef]
- Bellini, C.; Di Cocco, V.; Iacoviello, F.; Sorrentino, L. Performance evaluation of CFRP/Al fibre metal laminates with different structural characteristics. Compos. Struct. 2019, 225, 111117. [Google Scholar] [CrossRef]
- Xing, J.; Liu, S.; Gao, S.; Qu, S.; Sang, L. Mechanical performance of a novel glass fiber reinforced maleic anhydride grafted polypropylene composite and its thermoplastic-based fiber metal laminates. Polym. Compos. 2022, 43, 6180–6190. [Google Scholar] [CrossRef]
- Balakrishnan, V.S.; Hart-Rawung, T.; Buhl, J.; Seidlitz, H.; Bambach, M. Impact and damage behaviour of FRP-metal hybrid laminates made by the reinforcement of glass fibers on 22MnB5 metal surface. Compos. Sci. Technol. 2020, 187, 107949. [Google Scholar] [CrossRef]
- Hu, C.; Sang, L.; Jiang, K.; Xing, J.; Hou, W. Experimental and numerical characterization of flexural properties and failure behavior of CFRP/Al laminates. Compos. Struct. 2022, 281, 115036. [Google Scholar] [CrossRef]
- Sellitto, A.; Saputo, S.; Di Caprio, F.; Riccio, A.; Russo, A.; Acanfora, V. Numerical-Experimental Correlation of Impact-Induced Damages in CFRP Laminates. Appl. Sci. 2019, 9, 2372. [Google Scholar] [CrossRef] [Green Version]
- Sen, I.; Alderliesten, R.C.; Benedictus, R. Lay-up optimisation of fibre metal laminates based on fatigue crack propagation and residual strength. Compos. Struct. 2015, 124, 77–87. [Google Scholar] [CrossRef]
- Hu, H.; Wei, Q.; Liu, B.; Liu, Y.; Hu, N.; Ma, Q.; Wang, C. Progressive Damage Behaviour Analysis and Comparison with 2D/3D Hashin Failure Models on Carbon Fibre-Reinforced Aluminium Laminates. Polymers 2022, 14, 2946. [Google Scholar] [CrossRef]
- Rajabi, A.; Kadkhodayan, M.; Ghanei, S. An investigation into the flexural and drawing behaviors of GFRP-based fiber-metal laminate. Mech. Adv. Mater. Struct. 2018, 25, 805–812. [Google Scholar] [CrossRef]
- Hooputra, H.; Gese, H.; Dell, H.; Werner, H. A comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int. J. Crashworthiness 2004, 9, 449–463. [Google Scholar] [CrossRef]
- Roux, E.; Shakoor, M.; Bernacki, M.; Bouchard, P.O. A new finite element approach for modelling ductile damage void nucleation and growth-analysis of loading path effect on damage mechanisms. Model. Simul. Mater. Sci. Eng. 2014, 22, 075001. [Google Scholar] [CrossRef]
- De Cicco, D.; Taheri, F. Delamination Buckling and Crack Propagation Simulations in Fiber-Metal Laminates Using xFEM and Cohesive Elements. Appl. Sci. 2018, 8, 2440. [Google Scholar] [CrossRef]
- Camanho, P.P.; Davila, C.G.; de Moura, M.F. Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 2003, 37, 1415–1438. [Google Scholar] [CrossRef]
Symbol | Property | Value |
---|---|---|
Density | 2700 kg/m3 | |
Elastic modulus | 71.6 GPa | |
Possion’s ratio | 0.33 | |
Yield strength | 252 MPa | |
Tensile Strength | 374 MPa | |
Fracture strain | 0.18 |
Symbol | Property | Value |
---|---|---|
Density | 1000 kg/m3 | |
Longitudinal modulus | 115 GPa | |
Transverse modulus | 70 GPa | |
Elastic modulus | 70 GPa | |
Possion’s ratio | 0.33 | |
Possion’s ratio | 0.45 | |
Shear modulus | 3700 MPa | |
Shear modulus | 2000 MPa | |
Longitudinal tensile strength | 2107 MPa | |
Longitudinal compressive strength | 814 MPa | |
Transverse tensile strength | 35 MPa | |
Transverse compressive strength | 139.8 MPa | |
Shear strength | 34.7 MPa | |
Matrix fracture energy | 12.5 kJ/m2 | |
Fiber fracture energy | 1 kJ/m2 |
Structure | Stacking Configuration | Al Thickness (mm) | Mass (g) |
---|---|---|---|
2/1 FMLs | Al/[0/0]/Al | 0.3 | 2.27 |
2/1 FMLs patch | 0/Al/0 | 0.6 | 2.23 |
3/2 FMLs | Al/[0/0]/Al/ [0/0]/Al | 0.3 | 3.66 |
3/2 FMLs patch | 0/Al/0/Al/0/AL/0 | 0.3 | 3.83 |
Symbol | Value |
---|---|
100 GPa | |
5.37 MPa | |
36.62 MPa | |
36.62 MPa | |
0.23 kJ/m2 | |
0.48 kJ/m2 | |
1.45 | |
10−4 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Hou, W.; Xing, J.; Sang, L. Numerical and Experimental Investigation of Flexural Properties and Damage Behavior of CFRTP/Al Laminates with Different Stacking Sequence. Appl. Sci. 2023, 13, 1667. https://doi.org/10.3390/app13031667
Gao S, Hou W, Xing J, Sang L. Numerical and Experimental Investigation of Flexural Properties and Damage Behavior of CFRTP/Al Laminates with Different Stacking Sequence. Applied Sciences. 2023; 13(3):1667. https://doi.org/10.3390/app13031667
Chicago/Turabian StyleGao, Shiyi, Wenbin Hou, Jianing Xing, and Lin Sang. 2023. "Numerical and Experimental Investigation of Flexural Properties and Damage Behavior of CFRTP/Al Laminates with Different Stacking Sequence" Applied Sciences 13, no. 3: 1667. https://doi.org/10.3390/app13031667
APA StyleGao, S., Hou, W., Xing, J., & Sang, L. (2023). Numerical and Experimental Investigation of Flexural Properties and Damage Behavior of CFRTP/Al Laminates with Different Stacking Sequence. Applied Sciences, 13(3), 1667. https://doi.org/10.3390/app13031667