Application of Extrusion-Cooking for Processing of White and Red Bean to Create Specific Functional Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Extrusion-Cooking of Beans
2.3. Physical Properties
2.4. Chemical and Nutritional Characteristics
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties of Extruded Beans
3.1.1. SME and Expansion Ratio
3.1.2. Water Absorption and Water Solubility
3.2. Chemical and Nutritional Characteristics of Bean Extrudates
3.2.1. Proximate Chemical Composition
3.2.2. Nutritional Components in Extruded Beans
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bagherpour, H.; Minaei, S.; Khoshtaghaza, M.H. Selected physico-mechanical properties of lentil seed. Int. Agrophys. 2010, 24, 81–84. [Google Scholar]
- Kocira, S.; Kocira, A.; Kornas, R.; Koszel, M.; Szmigielski, M.; Krajewska, M.; Szparaga, A.; Krzysiak, Z. Effects of seaweed extract on yield and protein content of two common bean (Phaseolus vulgaris L.) cultivars. Legume Res. 2018, 41, 589–593. [Google Scholar] [CrossRef]
- Kutoš, T.; Golob, T.; Kač, M.; Plestenjak, A. Dietary fibre content of dry and processed beans. Food Chem. 2003, 80, 231–235. [Google Scholar] [CrossRef]
- Trinidad, T.P.; Mallillin, A.C.; Loyola, A.S.; Sagum, R.S.; Encabo, R.R. The potential health benefits of legumes as a good source of dietary fibre. Br. J. Nutr. 2010, 103, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.-J.; Liu, Q.; Pauls, K.P.; Fan, M.Z.; Yada, R. In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Res. Int. 2008, 41, 869–875. [Google Scholar] [CrossRef]
- Siddiq, M.; Uebersax, M.A. Dry Beans and Pulses Production, Processing and Nutrition; Wiley-Blackwell: Ames, IA, USA, 2013. [Google Scholar]
- Piecyk, M.; Wołosiak, R.; Drużyńska, B.; Worobiej, E. Chemical composition and starch digestibility in flours from Polish processed legume seeds. Food Chem. 2012, 135, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.U.H.; Sharif, M.K.; Bashir, S.; Ahsan, F. Role of healthy extruded snacks to mitigate malnutrition. Food Rev. Int. 2018, 35, 299–323. [Google Scholar] [CrossRef]
- Saadat, S.; Akhtar, S.; Ismail, T.; Sharif, M.K.; Shabbir, U.; Ahmad, N.; Ali, A. Multilegume bar prepared from extruded legumes flour to address protein energy malnutrition. Ital. J. Food Sci. 2019, 32, 167–180. [Google Scholar] [CrossRef]
- Rizkalla, S.W.; Bellisle, F.; Slama, G. Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals. Br. J. Nutr. 2002, 88, 255–262. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, A.K.; Gaytán-Martínez, M.; Morales-Sánchez, E.; Loarca-Piña, G. Functional properties and sensory value of snack bars added with common bean flour as a source of bioactive compounds. LWT Food Sci. Technol. 2018, 89, 674–680. [Google Scholar] [CrossRef]
- Summo, C.; Centomani, I.; Paradiso, V.M.; Caponio, F.; Pasqualone, A. The effects of the type of cereal on the chemical and textural properties and on the consumer acceptance of pre-cooked, legume-based burgers. LWT Food Sci. Technol. 2016, 65, 290–296. [Google Scholar] [CrossRef]
- Bouasla, A.; Wójtowicz, A.; Zidoune, M.N. Gluten-free precooked rice pasta enriched with legumes flours: Physical properties, texture, sensory attributes and microstructure. LWT Food Sci. Technol. 2017, 75, 569–577. [Google Scholar] [CrossRef]
- Berrios, J.d.J.; Camara, M.; Torija, M.E.; Alonso, M. Effect of extrusion cooking and sodium bicarbonate addition on the carbohydrate composition of black bean flours. J. Food Process. Preserv. 2002, 26, 113–128. [Google Scholar] [CrossRef]
- Moscicki, L. Extrusion-Cooking Techniques. Application, Theory and Sustainability; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Mercier, C.; Linko, P.; Harper, J.M. Extrusion Cooking; American Association of Cereal Chemists Inc.: St. Paul, MN, USA, 1989. [Google Scholar]
- Day, L.; Swanson, B.G. Functionality of protein-fortified extrudates. Compr. Rev. Food Sci. Food Saf. 2013, 12, 546–564. [Google Scholar] [CrossRef] [PubMed]
- Bouasla, A.; Wójtowicz, A.; Zidoune, M.N.; Olech, M.; Nowak, R.; Mitrus, M.; Oniszczuk, A. Gluten-free precooked rice-yellow pea pasta: Effect of extrusion-cooking conditions on phenolic acids composition, selected properties and microstructure. J. Food Sci. 2016, 81, C1070–C1079. [Google Scholar] [CrossRef]
- Guy, R. Extrusion Cooking: Technology and Application; CRC Press: Cambridge, UK, 2001. [Google Scholar]
- Wójtowicz, A.; Oniszczuk, A.; Oniszczuk, T.; Kocira, S.; Wojtunik, K.; Mitrus, M.; Kocira, A.; Widelski, J.; Skalicka-Woźniak, K. Application of Moldavian dragonhead (Dracocephalum moldavica L.) leaves addition as a functional component of nutritionally valuable corn snacks. J. Food Sci. Technol. 2017, 54, 3218–3229. [Google Scholar] [CrossRef] [PubMed]
- De la Rosa-Millan, J.; Heredia-Olea, E.; Perez-Carrillo, E.; Gujardo-Flores, D.; Serna-Saldivar, S.R.O. Effect of decortication, germination and extrusion on physicochemical and in vitro protein and starch digestion characteristics of black beans (Phaseolus vulgaris L.). LWT Food Sci. Technol. 2019, 102, 330–337. [Google Scholar] [CrossRef]
- Estrada-Giron, Y.; Martinez-Preciado, A.H.; Michel, C.R.; Soltero, J.F.A. Characterization of extruded blends of corn and beans (Phaseolus vulgaris) cultivars: Peruano and Black-Queretaro under different extrusion conditions. Int. J. Food Prop. 2015, 18, 2638–2651. [Google Scholar] [CrossRef]
- Osen, R.; Toelstede, S.; Wild, F.; Eisner, P.; Schweiggert-Weisz, U. High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. J. Food Eng. 2014, 127, 67–74. [Google Scholar] [CrossRef]
- Szczygiel, E.J.; Harte, J.B.; Strasburg, G.M.; Cho, S. Consumer acceptance and aroma characterization of navy bean (Phaseolus vulgaris) powders prepared by extrusion and conventional processing methods. J. Sci. Food Agric. 2017, 97, 4142–4150. [Google Scholar] [CrossRef]
- Vargas-Solórzano, J.W.; Carvalho, C.W.P.; Takeiti, C.Y.; Ascheri, J.L.R.; Queiroz, V.A.V. Physicochemical properties of expanded extrudates from colored sorghum genotypes. Food Res. Int. 2014, 55, 37–44. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Świeca, M.; Sȩczyk, Ł.; Gawlik-Dziki, U. Elicitation and precursor feeding as tools for the improvement of the phenolic content and antioxidant activity of lentil sprouts. Food Chem. 2014, 161, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Fuleki, T.; Francis, F.J. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J. Food Sci. 1968, 33, 72–77. [Google Scholar] [CrossRef]
- Szparaga, A.; Kocira, S.; Kocira, A.; Czerwińska, E.; Świeca, M.; Lorencowicz, E.; Kornas, R.; Koszel, M.; Oniszczuk, T. Modification of growth, yield, and the nutraceutical and antioxidative potential of soybean through the use of synthetic biostimulants. Front. Plant Sci. 2018, 9, 1401. [Google Scholar] [CrossRef] [PubMed]
- Sancho, R.A.S.; Pavan, V.; Pastore, G.M. Effect of in vitro digestion on bioactive compounds and antioxidant activity of common bean seed coats. Food Res. Int. 2015, 76, 74–78. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [Green Version]
- Moraru, C.I.; Kokini, J.L. Nucleation and expansion during extrusion and microwave heating of cereal foods. Compr. Rev. Food Sci. Food Saf. 2003, 2, 147–165. [Google Scholar] [CrossRef]
- Ryu, G.H.; Ng, P.K.W. Effect of selected process parameters on expansion and mechanical properties of wheat flour and whole cornmeal extrudates. Starch Starke 2001, 53, 147–154. [Google Scholar] [CrossRef]
- De Mesa, N.J.E.; Alavi, S.; Singh, N.; Shi, Y.-C.; Dogan, H.; Sang, Y. Soy protein-fortified expanded extrudates: Baseline study using normal corn starch. J. Food Eng. 2009, 90, 262–270. [Google Scholar] [CrossRef]
- Ai, Y.; Cichy, K.A.; Harte, J.B.; Kelly, J.D.; Ng, P.K.W. Effect of extrusion cooking on the chemical composition and functional properties of dry common bean powders. Food Chem. 2016, 211, 538–545. [Google Scholar] [CrossRef] [Green Version]
- Koksel, F.; Masatcioglu, M.T. Physical properties of puffed yellow pea snacks produced by nitrogen gas assisted extrusion cooking. LWT Food Sci. Technol. 2018, 93, 592–598. [Google Scholar] [CrossRef]
- Cappa, C.; Masseroni, L.; Ng, P.K.W.; Alamprese, C. Effect of extrusion condition on the physical and chemical properties of bean powders. J. Food Process. Preserv. 2020, 44, e14608. [Google Scholar] [CrossRef]
- Natabirwa, H.; Nakimbugwe, D.; Lung’aho, M.; Muyonga, J.H. Optimization of Roba1 extrusion condition and bean extrudate properties using response surface methodology and multi-response desirability function. LWT Food Sci. Technol. 2018, 96, 411–418. [Google Scholar] [CrossRef]
- Pasqualone, A.; Costantini, M.; Coldea, T.E.; Summo, C. Use of legumes in extrusion cooking: A review. Foods 2020, 9, 958. [Google Scholar] [CrossRef]
- Lopes, L.C.M.; de Aleluia Batista, K.; Fernandes, K.F.; de Andrade Cardoso Santiago, R. Functional, biochemical and pasting properties of extruded bean (Phaseolus vulgaris) cotyledons. Int. J. Food Sci. Technol. 2012, 47, 1859–1865. [Google Scholar] [CrossRef]
- Yağcɪ, S.; Göğüş, F. Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from food-by-products. J. Food Eng. 2008, 86, 122–132. [Google Scholar] [CrossRef]
- Sutividsedsak, N.; Singh, M.; Liu, S.; Hall, S.; Biswas, A. Extrudability of four common bean (Phaseolus vulgaris, L.). J. Food Process. Preserv. 2013, 37, 676–683. [Google Scholar] [CrossRef]
- Nyombaire, G.; Siddiq, M.; Dolan, K.D. Physico-chemical and sensory quality of extruded light red kidney bean (Phaseolus vulgaris L.) porridge. LWT Food Sci. Technol. 2011, 44, 1597–1602. [Google Scholar] [CrossRef]
- Jamalullail, N.A.; Chan, Y.L.; Tang, T.K.; Tan, C.P.; Mat Dian, N.L.H.; Cheong, L.Z.; Lai, O.M. Comparative study of physicochemical, nutritional and functional properties of whole and defatted legume flours. Food Res. 2022, 6, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Mitrus, M.; Wójtowicz, A.; Kocira, S.; Kasprzycka, A.; Szparaga, A.; Oniszczuk, T.; Combrzyński, M.; Kupryaniuk, K.; Matwijczuk, A. Effect of extrusion-cooking conditions on the pasting properties of extruded white and red bean seeds. Int. Agrophys. 2020, 34, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Marquezi, M.; Gervin, V.M.; Watanabe, L.B.; Bassinello, P.Z.; Amante, E.R. Physical and chemical properties of starch and flour from different common bean (Phaseolus vulgaris L.) cultivars. Braz. J. Food Technol. 2016, 19, e2016005. [Google Scholar] [CrossRef] [Green Version]
- Mekuria, S.A.; Kinyuru, J.N.; Mokua, B.K.; Tenagashaw, M.W. Nutritional quality and safety of complementary foods developed from blends of staple grains and honey bee larvae (Apis mellifera). Int. J. Food Sci. 2021, 2021, 5581585. [Google Scholar] [CrossRef]
- Patil, S.S.; Brennan, C.S.; Mason, S.L.; Brennan, C.S. The effects of fortification of legumes and extrusion on the protein digestibility of wheat based snack. Foods 2016, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Hegazy, H.S.; El-Bedawey, A.E.A.; Rahma, E.H.; Gaafar, A.M. Effect of extrusion process on nutritional, functional properties and antioxidant activity of germinated chickpea incorporated corn extrudates. Am. J. Food Sci. Nutr. Res. 2017, 4, 59–66. [Google Scholar]
- Gilani, G.S.; Xiao, C.W.; Cockell, K.A. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br. J. Nutr. 2012, 108, S315–S332. [Google Scholar] [CrossRef] [Green Version]
- Urbano, G.; López-Jurado, M.; Aranda, P.; Vidal-Valverde, C.; Tenorio, E.; Porres, J. The role of phytic acid in legumes: Antinutrient or beneficial function? J. Physiol. Biochem. 2000, 56, 283–294. [Google Scholar] [CrossRef]
- Singh, S.; Gamlath, S.; Wakeling, L. Nutritional aspects of food extrusion: A review. Int. J. Food Sci. Technol. 2007, 42, 916–929. [Google Scholar] [CrossRef]
- Patil, S.S.; Kaur, C. Current trends in extrusion: Development of functional foods and novel ingredients. Food Sci. Technol. Res. 2018, 24, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters. A Review. Crit. Rev. Food Sci. Nutr. 2015, 56, 445–473. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.S.; Varghese, E.; Rudra, S.G.; Kaur, C. Effect of extrusion processing on phenolics, flavonoids and antioxidant activity of millets. Int. J. Food Ferment. Technol. 2016, 6, 177–184. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Dao, L.T.; Full, G.H.; Wong, R.Y.; Harden, L.A.; Edwards, R.H.; de J. Berrios, J. Characterization of black bean (Phaseolus vulgaris L.) anthocyanins. J. Agric. Food Chem. 1997, 45, 3395–3400. [Google Scholar] [CrossRef]
- Go, E.J.; Ryu, B.R.; Ryu, S.J.; Kim, H.B.; Lee, H.T.; Kwon, J.W.; Baek, J.S.; Lim, J.D. An enhanced water solubility and stability of anthocyanins in mulberry processed with hot melt extrusion. Int. J. Mol. Sci. 2021, 22, 12377. [Google Scholar] [CrossRef] [PubMed]
- Durge, A.V.; Sarkar, S.; Singhal, R.S. Stability of anthocyanins as pre-extrusion colouring of rice extrudates. Food Res. Int. 2013, 50, 641–646. [Google Scholar] [CrossRef]
- Nayak, B.; Liu, R.H.; Berrios, J.D.; Tang, J.M.; Derito, C. Bioactivity of antioxidants in extruded products prepared from purple potato and dry pea flours. J. Agric. Food Chem. 2011, 59, 8233–8243. [Google Scholar] [CrossRef]
- Nicoli, M.C.; Anese, M.; Parpinel, M. Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci. Technol. 1999, 10, 94–100. [Google Scholar] [CrossRef]
- Šárka, E.; Sluková, M.; Henke, S. Changes in Phenolics during Cooking Extrusion: A Review. Foods 2021, 10, 2100. [Google Scholar] [CrossRef]
Screw Speed [rpm] | Water [l h−1] | Protein [%] | Neutral Detergent Fiber [%] | Reducing Sugars [%g glucose/100 g] | Total Phenols [mg/g] | Anthocyanin [mg/g] | Total Flavonoids [mg/g] | Antiradical Activity [mgTE/g] | Reducing Power [mgTE/g] |
---|---|---|---|---|---|---|---|---|---|
300 | 0.8 | 29.04 ± 0.04 fgh | 8.220 ± 0.010 s | 5.693 ± 0.325 efg | 13.23 ± 0.65 p | 0.090 ± 0.02 kl | 1.054 ± 0.001 h | 2.91 ± 0.04 fg | 1.200 ± 0.001 a |
1.2 | 29.39 ± 0.37 h | 8.306 ± 0.000 t | 7.213 ± 0.266 gh | 10.35 ± 0.05 o | 0.078 ± 0.004 j | 0.949 ± 0.003 c | 2.12 ± 0.02 ab | 1.202 ± 0.002 a | |
1.6 | 28.76 ± 0.24 ab | 7.903 ± 0.000 q | 4.106 ± 0.106 bcdef | 7.13 ± 0.71 ijklm | 0.054 ± 0.003 g | 1.066 ± 0.002 i | 2.38 ± 0.10 d | 3.040 ± 0.070 f | |
2.0 | 29.23 ± 0.19 gh | 7.723 ± 0.000 j | 7.734 ± 0.366 h | 3.66 ± 0.42 abcd | 0.083 ± 0.001 jk | 1.080 ± 0.001 j | 2.50 ± 0.01 de | 1.083 ± 0.003 a | |
2.4 | 29.21 ± 0.40 gh | 8.657 ± 0.001 x | 9.600 ± 0.547 ij | 2.77 ± 0.32 ab | 0.088 ± 0.002 kl | 1.012 ± 0.001 de | 2.99 ± 0.02 fg | 2.485 ± 0.006 e | |
400 | 0.8 | 27.93 ± 0.18 de | 7.931 ± 0.000 p | 6.818 ± 0.397 gh | 13.87 ± 0.14 p | 0.020 ± 0.002 cd | 1.042 ± 0.002 g | 3.03 ± 0.02 g | 1.279 ± 0.002 a |
1.2 | 28.09 ± 0.27 de | 8.384 ± 0.000 u | 2.615 ± 0.018 ab | 10.60 ± 0.47 o | 0.066 ± 0.005 hi | 1.043 ± 0.003 g | 2.59 ± 0.08 e | 1.605 ± 0.411 b | |
1.6 | 28.26 ± 0.17 de | 7.858 ± 0.000 n | 5.739 ± 0.261 efg | 7.92 ± 0.27 lm | 0.013 ± 0.001 ab | 0.906 ± 0.006 b | 2.46 ± 0.04 d | 1.213 ± 0.003 a | |
2.0 | 28.49 ± 0.45 ab | 7.643 ± 0.000 h | 5.047 ± 0.100 def | 4.66 ± 0.19 def | 0.025 ± 0.003 de | 1.031 ± 0.000 f | 2.96 ± 0.05 fg | 2.138 ± 0.002 cd | |
2.4 | 27.99 ± 0.29 de | 8.418 ± 0.002 v | 8.413 ± 0.834 hi | 3.26 ± 0.51 abcd | 0.081 ± 0.001 j | 1.042 ± 0.002 g | 3.62 ± 0.05 l | 2.038 ± 0.002 a | |
500 | 0.8 | 27.67 ± 0.33 cd | 9.322 ± 0.000 y | 4.652 ± 0.336 cdef | 8.52 ± 0.43 mn | 0.027 ± 0.003 e | 1.030 ± 0.001 f | 3.29 ± 0.02 jk | 1.057 ± 0.003 a |
1.2 | 28.70 ± 0.27 efgh | 7.374 ± 0.001 d | 11.528 ± 0.686 k | 8.26 ± 0.33 mn | 0.062 ± 0.001 h | 0.921 ± 0.001 a | 2.22 ± 0.03 bc | 1.946 ± 0.004 c | |
1.6 | 28.12 ± 0.12 de | 7.359 ± 0.001 b | 10.403 ± 1.245 jk | 6.07 ± 0.82 ghij | 0.051 ± 0.001 fg | 1.131 ± 0.001 l | 3.03 ± 0.02 g | 1.084 ± 0.005 a | |
2.0 | 27.04 ± 0.04 bc | 7.665 ± 0.002 i | 3.989 ± 0.117 bcde | 4.37 ± 0.57 cde | 0.067 ± 0.003 hi | 1.028 ± 0.001 f | 2.16 ± 0.03 abc | 1.038 ± 0.005 a | |
2.4 | 28.17 ± 0.19 de | 7.853 ± 0.000 m | 2.081 ± 0.397 a | 2.19 ± 0.10 a | 0.049 ± 0.002 fg | 1.062 ± 0.002 i | 3.16 ± 0.02 hi | 3.200 ± 0.014 f | |
600 | 0.8 | 28.31 ± 0.18 def | 8.051 ± 0.001 r | 7.046 ± 0.941 gh | 7.48 ± 0.72 jklm | 0.031 ± 0.004 e | 1.337 ± 0.007 m | 2.26 ± 0.01 c | 2.223 ± 0.011 d |
1.2 | 28.28 ± 0.28 def | 8.535 ± 0.000 w | 8.027 ± 0.238 hi | 7.65 ± 0.09 klm | 0.046 ± 0.002 f | 1.010 ± 0.001 de | 2.89 ± 0.03 f | 1.242 ± 0.002 a | |
1.6 | 28.75 ± 0.26 ab | 7.786 ± 0.002 l | 3.008 ± 1.113 abc | 6.45 ± 0.60 hijkl | 0.011 ± 0.001 a | 1.069 ± 0.002 i | 2.08 ± 0.03 a | 2.134 ± 0.004 cd | |
2.0 | 28.06 ± 0.05 de | 7.510 ± 0.000 f | 4.845 ± 0.634 def | 2.81 ± 0.36 abc | 0.069 ± 0.001 i | 1.078 ± 0.001 j | 3.02 ± 0.04 fg | 1.047 ± 0.004 a | |
2.4 | 30.20 ± 0.20 i | 7.381 ± 0.001 e | 5.864 ± 0.285 fg | 5.20 ± 0.62 fgh | 0.030 ± 0.000 e | 1.094 ± 0.003 k | 3.53 ± 0.03 l | 1.135 ± 0.003 a | |
700 | 0.8 | 28.24 ± 0.23 de | 7.575 ± 0.001 g | 3.741 ± 0.154 abcd | 6.36 ± 0.33 hijk | 0.093 ± 0.003 l | 1.007 ± 0.002 d | 3.18 ± 0.03 ij | 1.183 ± 0.003 a |
1.2 | 28.01 ± 0.01 de | 7.194 ± 0.001 a | 4.086 ± 0.612 bcdef | 3.30 ± 0.13 abcd | 0.071 ± 0.000 i | 1.053 ± 0.003 h | 3.33 ± 0.05 k | 1.099 ± 0.002 a | |
1.6 | 28.53 ± 0.06 efg | 7.747 ± 0.000 k | 3.029 ± 0.024 abc | 3.15 ± 0.24 abcd | 0.010 ± 0.001 a | 1.017 ± 0.000 e | 3.04 ± 0.03 gh | 1.121 ± 0.001 a | |
2.0 | 28.58 ± 0.10 efg | 7.889 ± 0.000 o | 2.538 ± 0.433 ab | 4.18 ± 0.74 bcde | 0.017 ± 0.001 bc | 1.050 ± 0.001 gh | 2.45 ± 0.03 d | 1.002 ± 0.002 a | |
2.4 | 28.23 ± 0.20 a | 7.370 ± 0.000 c | 3.239 ± 0.502 abcd | 9.47 ± 0.63 no | 0.079 ± 0.002 j | 1.049 ± 0.001 gh | 3.04 ± 0.04 g | 1.029 ± 0.003 a |
Screw Speed [rpm] | Water [l h−1] | Protein [%] | Neutral Detergent Fiber [%] | Reducing Sugars [%g Glucose/100 g] | Total Phenols [mg/g] | Total Flavonoids [mg/g] | Antiradical Activity [mgTE/g] | Reducing Power [mgTE/g] |
---|---|---|---|---|---|---|---|---|
300 | 0.8 | 27.82 ± 0.19 gh | 7.626 ± 0.001 o | 9.518 ± 0.271 j | 1.28 ± 0.26 abc | 0.008 ± 0.001 a | 0.065 ± 0.0054 ab | 0.157 ± 0.003 kl |
1.2 | 27.20 ± 0.21 ef | 7.115 ± 0.000 e | 6.812 ± 0.812 fghi | 2.67 ± 0.34 fg | 0.026 ± 0.001 ab | 0.110 ± 0.010 abcd | 0.051 ± 0.002 de | |
1.6 | 27.61 ± 0.37 fg | 7.760 ± 0.000 p | 5.519 ± 0.466 def | 2.21 ± 0.23 cdefg | 0.019 ± 0.002 a | 0.085 ± 0.005 abc | 0.035 ± 0.003 c | |
2.0 | 26.94 ± 0.06 d | 8.058 ± 0.000 s | 15.703 ± 0.545 l | 1.69 ± 0.29 abcde | 0.104 ± 0.004 efg | 0.075 ± 0.005 ab | 0.088 ± 0.004 f | |
2.4 | 26.53 ± 0.26 cd | 7.328 ± 0.001 i | 11.390 ± 0.864 k | 2.46 ± 0.46 defg | 0.204 ± 0.003 j | 0.200 ± 0.010 defgh | 0.160 ± 0.002 l | |
400 | 0.8 | 28.80 ± 0.29 j | 7.534 ± 0.001 l | 3.652 ± 0.138 abc | 1.21 ± 0.37 ab | 0.119 ± 0.001 fgh | 0.235 ± 0.015 fgh | 0.109 ± 0.002 g |
1.2 | 26.50 ± 0.49 cd | 7.254 ± 0.000 g | 5.846 ± 0.372 efg | 1.47 ± 0.47 abc | 0.029 ± 0.002 ab | 0.140 ± 0.010 abcdef | 0.046 ± 0.001 cde | |
1.6 | 27.91 ± 0.20 gh | 7.559 ± 0.000 m | 4.335 ± 0.651 bcd | 1.80 ± 0.22 bcdef | 0.066 ± 0.002 cd | 0.125 ± 0.015 abcde | 0.206 ± 0.005 m | |
2.0 | 27.27 ± 0.25 ef | 7.427 ± 0.000 jk | 4.038 ± 0.249 bc | 1.93 ± 0.11 bcdef | 0.071 ± 0.001 cde | 0.075 ± 0.015 ab | 0.038 ± 0.002 cd | |
2.4 | 26.14 ± 0.24 abc | 8.421 ± 0.002 | 5.686 ± 0.318 def | 1.34 ± 0.06 abc | 0.122 ± 0.002 fgh | 0.235 ± 0.025 fgh | 0.218 ± 0.003 n | |
500 | 0.8 | 26.89 ± 0.16 de | 8.013 ± 0.000 r | 4.922 ± 0.080 cde | 1.83 ± 0.23 bcdef | 0.067 ± 0.001 cd | 0.185 ± 0.015 cdefg | 0.003 ± 0.002 a |
1.2 | 28.11 ± 0.37 hi | 7.138 ± 0.000 f | 2.502 ± 0.024 a | 1.00 ± 0.03 ab | 0.122 ± 0.002 fgh | 0.250 ± 0.030 gh | 0.010 ± 0.001 ab | |
1.6 | 26.85 ± 0.30 de | 7.049 ± 0.001 c | 3.923 ± 0.182 abc | 1.62 ± 0.08 abcd | 0.164 ± 0.004 i | 0.295 ± 0.015 gh | 0.050 ± 0.003 de | |
2.0 | 26.04 ± 0.11 ab | 7.431 ± 0.002 k | 8.160 ± 0.156 i | 1.28 ± 0.41 abc | 0.078 ± 0.003 de | 0.215 ± 0.005 defgh | 0.057 ± 0.003 e | |
2.4 | 26.09 ± 0.06 ab | 8.894 ± 0.005 v | 7.808 ± 0.650 hi | 1.55 ± 0.24 abcd | 0.012 ± 0.001 a | 0.051 ± 0.040 a | 0.142 ± 0.009 ij | |
600 | 0.8 | 28.16 ± 0.33 hi | 7.285 ± 0.001 h | 4.923 ± 0.291 cde | 1.22 ± 0.17 ab | 0.082 ± 0.002 de | 0.110 ± 0.010 abcd | 0.121 ± 0.001 h |
1.2 | 27.82 ± 0.15 gh | 9.068 ± 0.003 u | 9.583 ± 0.425 j | 0.81 ± 0.21 a | 0.092 ± 0.002 def | 0.1360 ± 0.010 abcdef | 0.131 ± 0.007 hi | |
1.6 | 26.92 ± 0.08 de | 7.054 ± 0.004 d | 6.264 ± 0.263 efg | 1.28 ± 0.24 abc | 0.077 ± 0.003 de | 0.125 ± 0.015 abcde | 0.047 ± 0.011 cde | |
2.0 | 26.93 ± 0.14 de | 7.739 ± 0.001 q | 2.868 ± 0.973 ab | 1.61 ± 0.36 abcd | 0.069 ± 0.051 cd | 0.160 ± 0.020 bcdefg | 0.145 ± 0.002 jk | |
2.4 | 28.46 ± 0.33 ij | 7.601 ± 0.001 n | 7.458 ± 0.331 ghi | 2.94 ± 0.21 g | 0.132 ± 0.002 ghi | 0.165 ± 0.135 bcdefg | 0.040 ± 0.001 cd | |
700 | 0.8 | 26.53 ± 0.32 d | 6.839 ± 0.001 a | 3.263 ± 0.000 ab | 3.79 ± 0.32 h | 0.149 ± 0.002 hi | 0.265 ± 0.025 gh | 0.196 ± 0.005 m |
1.2 | 27.27 ± 0.26 ef | 7.323 ± 0.001 g | 3.352 ± 0.227 ab | 2.60 ± 0.45 efg | 0.058 ± 0.002 bcd | 0.200 ± 0.020 defgh | 0.013 ± 0.001 ab | |
1.6 | 27.95 ± 0.29 gh | 7.422 ± 0.000 j | 6.493 ± 0.493 fgh | 1.69 ± 0.09 abcde | 0.041 ± 0.001 abc | 0.135 ± 0.025 abcdef | 0.049 ± 0.002 cde | |
2.0 | 26.56 ± 0.16 d | 6.949 ± 0.000 b | 7.759 ± 0.241 hi | 1.05 ± 0.14 ab | 0.163 ± 0.003 i | 0.230 ± 0.010 efgh | 0.020 ± 0.002 b | |
2.4 | 27.08 ± 0.08 e | 8.525 ± 0.001 t | 6.771 ± 0.282 fghi | 2.59 ± 0.39 efg | 0.007 ± 0.001 a | 0.045 ± 0.005 a | 0.221 ± 0.009 n |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitrus, M.; Wójtowicz, A.; Oniszczuk, T.; Combrzyński, M.; Bouasla, A.; Kocira, S.; Czerwińska, E.; Szparaga, A. Application of Extrusion-Cooking for Processing of White and Red Bean to Create Specific Functional Properties. Appl. Sci. 2023, 13, 1671. https://doi.org/10.3390/app13031671
Mitrus M, Wójtowicz A, Oniszczuk T, Combrzyński M, Bouasla A, Kocira S, Czerwińska E, Szparaga A. Application of Extrusion-Cooking for Processing of White and Red Bean to Create Specific Functional Properties. Applied Sciences. 2023; 13(3):1671. https://doi.org/10.3390/app13031671
Chicago/Turabian StyleMitrus, Marcin, Agnieszka Wójtowicz, Tomasz Oniszczuk, Maciej Combrzyński, Abdallah Bouasla, Sławomir Kocira, Ewa Czerwińska, and Agnieszka Szparaga. 2023. "Application of Extrusion-Cooking for Processing of White and Red Bean to Create Specific Functional Properties" Applied Sciences 13, no. 3: 1671. https://doi.org/10.3390/app13031671
APA StyleMitrus, M., Wójtowicz, A., Oniszczuk, T., Combrzyński, M., Bouasla, A., Kocira, S., Czerwińska, E., & Szparaga, A. (2023). Application of Extrusion-Cooking for Processing of White and Red Bean to Create Specific Functional Properties. Applied Sciences, 13(3), 1671. https://doi.org/10.3390/app13031671