Wind Loads on Overhead Sign Structures: A Comparative Study
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Computational Domain
3.2. Panels
Grid-Independence Study
4. Results
4.1. Pressure Contours
4.2. Drag and Force Coefficients for Porous Panels
4.3. Turbulence Intensity in the Wake
5. Discussion of Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meehl, G.A.; Zwiers, F.; Evans, J.; Knutson, T.; Mearns, L.; Whetton, P. Trends in Extreme Weather and Climate Events: Issues Related to Modeling Extremes in Projections of Future Climate Change. Bull. Am. Meteorol. Soc. 2000, 81, 427–436. [Google Scholar] [CrossRef]
- Cauffman, S.A.; Phan, L.T.; Sadek, F.; Fritz, W.P.; Duthinh, D.; Rossiter, W.J., Jr. Performance of Physical Structures in Hurricane Katrina and Hurricane Rita: A Reconnaissance Report; NIST TN 1476; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2006. [Google Scholar] [CrossRef]
- Magnus, J.R.; Melenberg, B.; Muris, C. Global Warming and Local Dimming: The Statistical Evidence. J. Am. Stat. Assoc. 2011, 106, 452–464. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.-K.; Schubert, S.D.; Kovach, R.; Molod, A.M.; Pawson, S. The Roles of Climate Change and Climate Variability in the 2017 Atlantic Hurricane Season. Sci. Rep. 2018, 8, 16172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Oceanic and Atmospheric Administration Climate Change Impacts. Available online: https://www.noaa.gov/education/resource-collections/climate/climate-change-impacts (accessed on 7 July 2021).
- Broach, D. These Are the 10 Most Expensive Hurricanes in U.S. History; See Video, Storm Tracks. Available online: https://www.nola.com/news/hurricane/article_cff6f988-9499-11eb-9f35-9387b108dc7f.html (accessed on 7 July 2021).
- Strauss, B.H.; Orton, P.M.; Bittermann, K.; Buchanan, M.K.; Gilford, D.M.; Kopp, R.E.; Kulp, S.; Massey, C.; de Moel, H.; Vinogradov, S. Economic Damages from Hurricane Sandy Attributable to Sea Level Rise Caused by Anthropogenic Climate Change. Nat. Commun. 2021, 12, 2720. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.M.; Thomas, M.; Gol-Zaroudi, H. Experimental Investigation of the Aerodynamics of a Large Industrial Building with Parapet. Adv. Aerodyn. 2021, 3, 26. [Google Scholar] [CrossRef]
- Wang, D.; Chen, X.; Li, J.; Cheng, H. Wind Load Characteristics of Large Billboard Structures with Two-Plate and Three-Plate Configurations. Wind Struct. 2016, 22, 703–721. [Google Scholar] [CrossRef]
- Dexter, R.; Ricker, M. Fatigue-Resistant Design of Cantilevered Signal, Sign, and Light Supports; National Academy Press: Washington, DC, USA, 2002; ISBN 0-309-06724-3. [Google Scholar]
- Beneberu, E. Computational Fluid Dynamics for Civil Engineering Infrastructure; Oklahoma State University: Stillwater, OK, USA, 2008. [Google Scholar]
- Kacin, J.; Rizzo, P.; Tajari, M. Fatigue Analysis of Overhead Sign Support Structures. Eng. Struct. 2010, 32, 1659–1670. [Google Scholar] [CrossRef]
- McDonald, J.R.; Mehta, K.C.; Oler, W.; Pulipaka, N. Wind Load Effects on Signs, Luminaires and Traffic Signal Structures; Report No. REPT-1303-F; Federal Highway Administration: Austin, TX, USA, 1995.
- Toja-Silva, F.; Kono, T.; Peralta, C.; Lopez-Garcia, O.; Chen, J. A Review of Computational Fluid Dynamics (CFD) Simulations of the Wind Flow around Buildings for Urban Wind Energy Exploitation. J. Wind Eng. Ind. Aerodyn. 2018, 180, 66–87. [Google Scholar] [CrossRef]
- Li, R.; Wang, Y.; Lin, H.; Du, H.; Wang, C.; Chen, X.; Huang, M. A Mesoscale CFD Simulation Study of Basic Wind Pressure in Complex Terrain—A Case Study of Taizhou City. Appl. Sci. 2022, 12, 10481. [Google Scholar] [CrossRef]
- Katz, A.; Sankaran, V. Mesh quality effects on the accuracy of CFD solutions on unstructured meshes. J. Comput. Phys. 2011, 230, 7670–7686. [Google Scholar] [CrossRef]
- Constantinescu, G.; Bhatti, A.; Tokyay, T. Improved Method for Determining Wind Loads on Highway Sign and Traffic-Signal Structures; TR-559; University of Iowa: Iowa City, IA, USA, 2007. [Google Scholar]
- Buresti, G.; Iungo, G.V.; Lombardi, G. Methods for the Drag Reduction of Bluff Bodies and Their Application to Heavy Road-Vehicles. Allergy 2007, 62, v–vii. [Google Scholar] [CrossRef]
- Li, K.; Li, H.; Li, S.; Chen, Z. Fully Convolutional Neural Network Prediction Method for Aerostatic Performance of Bluff Bodies Based on Consistent Shape Description. Appl. Sci. 2022, 12, 3147. [Google Scholar] [CrossRef]
- Holmes, J.D. Wind Loading of Structures, 3rd ed; CRC Press: London, UK, 2015. [Google Scholar]
- Shi, T.; Hu, G.; Zou, L. Aerodynamic Shape Optimization of an Arc-Plate-Shaped Bluff Body via Surrogate Modeling for Wind Energy Harvesting. Appl. Sci. 2022, 12, 3965. [Google Scholar] [CrossRef]
- ASCE/SEI 7-22 Minimum Design Loads and Associated Criteria for Buildings and Other Structures; ASCE/SEI 7; American Society of Civil Engineers: Reston, VA, USA, 2021; ISBN 9780784415788.
- Peterson, E.W.; Hennessey, J.P., Jr. On the Use of Power Laws for Estimates of Wind Power Potential. J. Appl. Meteorol. Climatol. 1978, 17, 390–394. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS Fluent User’s Guide; ANSYS: Canonsburg, PA, USA, 2013; ISBN 9781467348669. [Google Scholar]
- Shewchuk, J.R. Tetrahedral Mesh Generation by Delaunay Refinement. Proc. Annu. Symp. Comput. Geom. 1998, 86–95. [Google Scholar] [CrossRef]
- Ortiz, X.; Rival, D.; Wood, D. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades. Energies 2015, 8, 2438–2453. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.S.; Wang, P.C.; Yeo, J.J.; Yu, S.C.M. Experimental and Numerical Studies for Flow over a Sierpinski Tetrahedron for Potential Windbreak Application. J. Wind Eng. Ind. Aerodyn. 2021, 216, 104712. [Google Scholar] [CrossRef]
- Sung, H.; Chong, K.; Chung, W. Influence of Porosity on Drag Coefficient of Perforated Road Signs. Appl. Sci. 2023, 13, 502. [Google Scholar] [CrossRef]
Panel | Cp | Porosity | CD | Drag Force | |||
---|---|---|---|---|---|---|---|
Type | Windward | Leeward | Factor | Non-Linear | Linear | CFD | Reduction |
standard | 0.766 | −0.440 | 1.00 | - | 1.206 | 1.206 | 0% |
28 holes | 0.765 | −0.591 | 0.75 | 1.018 | 1.017 | 1.018 | 15.62% |
200 holes | 0.761 | −0.723 | 0.75 | 1.136 | 1.113 | 1.136 | 5.83% |
10 slots | 0.758 | −0.649 | 0.75 | 1.071 | 1.055 | 1.071 | 11.28% |
curved | 0.643 | −0.416 | 1.00 | - | 1.059 | 0.924 | 21.81% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aly, A.M.; Benson, J. Wind Loads on Overhead Sign Structures: A Comparative Study. Appl. Sci. 2023, 13, 1682. https://doi.org/10.3390/app13031682
Aly AM, Benson J. Wind Loads on Overhead Sign Structures: A Comparative Study. Applied Sciences. 2023; 13(3):1682. https://doi.org/10.3390/app13031682
Chicago/Turabian StyleAly, Aly Mousaad, and James Benson. 2023. "Wind Loads on Overhead Sign Structures: A Comparative Study" Applied Sciences 13, no. 3: 1682. https://doi.org/10.3390/app13031682
APA StyleAly, A. M., & Benson, J. (2023). Wind Loads on Overhead Sign Structures: A Comparative Study. Applied Sciences, 13(3), 1682. https://doi.org/10.3390/app13031682