Evaluation and Economics of Shale Gas Reserves in the Flysch-Eocene Formation of the Jaca Basin
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Geology. Discovery of the Jaca Flysch
- Lower carbonate Flysch. Carbonate breccias intercalated with sands and clays, 150–300 m thick. Recognized as the source rock of the Serrablo Field.
- Sandy Flysch. Submarine turbiditic sands with intercalations of carbonate mega-layers (Gallego, Aurín, Suprajaca and Jaca), 10–100 m thick.
- Upper Flysch. Similar to sandy Flysch, but without megalayers.
- Blue marls. They are interfingered with the Flysch acting as a seal.
2.2. Estimated Volume of Flysch Reserves
2.2.1. Flysch Thickness
2.2.2. Porosity
2.2.3. Water Saturation
2.2.4. Gas Formation Initial Volume Factor
2.2.5. Reserves (OGIP)
3. Results
3.1. Production of the Flysch
3.1.1. Production of the Well
3.1.2. Total Production
3.2. Well Economic Analysis
4. Discussion
4.1. Impact on the Gas Sector
4.2. Required Infrastructures
4.3. Environmental Challenges
4.3.1. Use of Large Volumes of Water
4.3.2. Potential Water Contamination
4.3.3. Emissions of CH4 and CO2
4.3.4. Earthquakes Induced
4.3.5. Impacts on Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
A | Area |
a | Tortuosity factor |
Bcf/m | Billion cubic feet/meters |
Bgi | Gas formation volume factor (rcf/scf) |
Bsm3 | Billion standard cubic meters |
ft | Feet |
Hgross | Thickness (ft) |
MMsm3 | Millions standard cubic meters |
m | Cementation exponent 1.7–3.0 (usually 2.0) |
n | Saturation exponent 1.8–4.0 (usually 2.0) |
rcf/m3 | Reservoir cubic feet/meters |
Rt | Formation resistivity (ohm/m) |
Rw | Water resistivity at formation temperature (ohm/m) |
scf | Standard cubic feet |
sm3/d | Standard cubic meter/day |
Sw | Water saturation (%) |
Swi | Irreducible water saturation (%) |
Tcf/m | Trillion cubic feet/meters |
Δt | Transit time through formation (μs/ft) |
Δtf | Transit time through fluid (μs/ft) |
Δtma | Transit time through matrix, formation without fluid (μs/ft) |
∅ | Porosity (%) |
IRR | Internal rate of return |
LNG | Liquefied natural gas |
NPV | Net present value |
NTG | Net to gross (%) |
OGIP | Original gas in place (sm3) |
Ro | Thermal maturity (%) |
TDS | Total dissolved solids (mg/L, ppm) |
TOC | Total organic carbon (%) |
References
- Martínez Orío, R. Estudio de las áreas con potencial de shale gas en el principado de Asturias. In Realización de un Estudio Hidrogeológico en Estructuras Geológicas Relevantes y Con Potencial Actividad Económica; Convenio Específico de Colaboración Principado de Asturias-IGME: Madrid, Spain, 2014. [Google Scholar]
- Ghosh, T.K.; Prelas, M.A. Energy resources and systems. In Fundamentals and Non-Renewable Resources; Springer: Berlin, Germany, 2009; Volume 1. [Google Scholar]
- EIA’s Energy in Brief: What Is Shale Gas and Why Is It Important? 2010. Available online: http://www.eia.doe.gov/energy_in_brief/about_shale_gas.cfm (accessed on 12 May 2022).
- Gidley, J.L.; Holditch, S.A.; Nierode, D.E.; Veatch, R.W., Jr. Recent Advances in Hydraulic Fracturing; SPE Monograph Series; Society of Petroleum Engineers: Richardson, TX, USA, 1990; Volume 12, 464p. [Google Scholar]
- EPA. Hydraulic Fracturing Background Information; US Environmental Protection Agency, Ed.; US Environmental Protection Agency: Washington, DC, USA, 2012. [Google Scholar]
- Sáenz de Santa María Benedet, J.A.; Gutiérrez Claverol, M. Valoración de la técnica de fracturación hidráulica y su aplicación a la extracción de gas no convencional en las cuencas carbonífera y jurásica de Asturias. Trab. Geol. 2013, 33, 201–229. [Google Scholar]
- Broderick, J.; Anderson, K.; Wood, R.; Gilbert, P.; Sharmina, M.; Footitt, A.; Glynn, S.; Nicholls, F. Shale Gas: An Updated Assessment of Environmental and Climate Change Impacts; Tyndall Centre University of Manchester: Manchester, UK, 2011; pp. 1–125. [Google Scholar]
- Hazen and Sawyer Environmental Engineers & Scientists. Impact Assessment of Natural Gas Production in the New York City Water Supply Watershed. Final Impact Assessmet Report. December 2009. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi4gPfz5ev8AhXUO3AKHdzOAFcQFnoECAkQAQ&url=http%3A%2F%2Fwww.aqlpa.com%2Fsites%2Fass-010-aqlpa%2Ffiles%2Ffiles%2Fgaz%2520de%2520schiste%2Fimpact_assessment_of_natural_gas_production.pdf&usg=AOvVaw2q6mQ44e65SStLvQHCZ7qr (accessed on 26 January 2023).
- Modern Shale Gas Development in the United States: A Primer; U.S. Department of Energy Office of Fossil Energy, National Energy Technology Laboratory: Washington, DC, USA, 2009.
- Fjær, E.; Holt, R.M.; Horsrud, P.; Raaen, A.M.; Risnes, R. Chapter 11 Mechanics of hydraulic fracturing. Dev. Pet. Sci. 2008, 53, 369–390. [Google Scholar] [CrossRef]
- Qiang, W.; Xi, C.; Awadhesh, N.J.; Howard, R. Natural gas from shale formation-The evolution, evidences and challenges of shale gas revolution in United States. Renew. Sustain. Energy Rev. 2014, 30, 1–28. [Google Scholar] [CrossRef]
- EIA. Annual Energy Outlook 2012; US Energy Information Administration: Washington, DC, USA, 2012. [Google Scholar]
- Annual Energy Outlook 2020 with Projections to 2050. 29 January 2020. #AEO2020. Available online: www.eia.gov/aeo (accessed on 8 May 2022).
- Rascoe, A. US Lawmakers Press DOE to Speed LNG Export Review; Reuters: London, UK, 2012. [Google Scholar]
- REPowerEu; Affordable, Secure and Sustainable Energy for Europe. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe_es (accessed on 4 July 2022).
- European Union. EU Taxonomy 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=PI_COM%3AC%282022%29631&qid=1647359214328#document1 (accessed on 30 May 2022).
- Plan Nacional Integrado de Energía y Clima (PNIEC) 2021–2030. Available online: https://www.miteco.gob.es/es/prensa/pniec.aspx (accessed on 12 August 2022).
- Comisión Nacional de los Mercados y la Competencia. 2020. Informe de Supervisión del Mercado de Gas Natural en España. 2019. Available online: https://www.cnmc.es/listado/sucesos_energia_mercado_gas_informes_anuales_gas/block/250 (accessed on 4 July 2022).
- El Mercado del Gas en España. Epdata 2022. Available online: https://www.epdata.es/datos/mercado-gas-espana-graficos/614 (accessed on 18 May 2022).
- Bickle, M.; Roberts, J.; Goodman, D.; Selley, R.; Mair, R.; Shipton, Z.; Thomas, H.; Walker, A.; Woods, E.; Younger, P. Shale Gas Extraction in the UK: A Review of Hydraulic Fracturing; Joint Report; The Royal Society and The Royal Academy of Engineering: London, UK, 2012. [Google Scholar]
- Boletín Oficial del Estado. Ley 7, 2021, de 20 de Mayo, de Cambio Climático y Transición Energética. Available online: https://www.boe.es/eli/es/l/2021/05/20/7/con (accessed on 12 May 2022).
- Estadísticas Prospección y Producción de Hidrocarburos. Ministerio para la Transición Ecológica y el Reto Demográfico. Available online: https://energia.gob.es/petroleo/Exploracion/EstadisticasPetroleo/Paginas/IndexEstad%c3%adsticas.aspx (accessed on 20 June 2022).
- Del Olmo, W.M. The Spanish Petroleum Systems and the Overlooked Areas and Targets. Bol. Geol. Min. 2019, 130, 289–315. [Google Scholar]
- Mani, D.; Kalpana, M.S.; Patil, D.J.; Dayal, A.M. Chapter 3—Organic Matter in Gas Shales: Origin, Evolution, and Characterization. Explor. Environ. Econ. Impacts 2017, 25–54. [Google Scholar] [CrossRef]
- Puigdefábregas, C. La Sedimentación Molásica en la Cuenca de Jaca. CSIC, 1975. MON EEP 104, p. 188. Available online: http://hdl.handle.net/10261/82989 (accessed on 9 June 2022).
- Rodriguez, R.; Álvarez, V.; Muñoz, A. Shale Gas & Tight Gas. Oportunidades de Desarrollo en España. Proyecto “Flysch de Jaca”; Documentación interna de trabajo; Fundación Instituto Petrofísico: Getafe, Spain, 2009. [Google Scholar]
- Camara, P.; Pedro, J.; Moreno, J. Serrablo gas field: An example of a trap in syntectonic brecciated reservoirs, Pyrenees (Spain). AAPG Bull. 1988, 72, 8–15. [Google Scholar]
- Licencias de Prospección Petrolera (Permisos y Licencias Investigación Hidrocarburos). Archivo Técnico de Hidrocarburos (ATH). Ministerio para la Transición Ecológica y el Reto Demográfico. Available online: https://sede.serviciosmin.gob.es/es-ES/Paginas/aviso.aspx#Reutilizacion (accessed on 8 May 2022).
- Mapa de Infraestructuras de Enagás en España. Enagás. (Julio 13 2021). Available online: https://www.enagas.es/enagas/en/Transporte_de_gas/TransporteYOperacion/MapaInfraestructuras (accessed on 11 July 2022).
- Arenillas González, A.; Molinero, R.; García Crespo, J.; Mediato Arribas, J.F.; Nita, R. Shale Gas Assesment in Spain: Basin and Formation Description. 2017. Available online: https://digital.csic.es/handle/10261/273194 (accessed on 20 January 2023).
- Şen, Ş. Prediction of fluid oil and gas volumes of shales with a deep learning model and its application to the Bakken and Marcellus shales. Sci. Rep. 2022, 12, 20842. [Google Scholar] [CrossRef]
- Ehsan, M.; Gu, H.; Akhtar, M.M.; Abbasi, S.S.; Ullah, Z. Identification of Hydrocarbon Potential of Talhar Shale: Member of Lower Goru Formation Using Well Logs Derived Parameters, Southern Lower Indus Basin, Pakistan. J. Earth Sci. 2018, 29, 587–593. [Google Scholar] [CrossRef]
- Glover, P. Petrophysics MSc Course Notes; Sonic (Acoustic) Log.; Department of Geology and Petroleum Geology, University of Aberdeen: Aberdeen, UK, 1998; pp. 172–197. [Google Scholar]
- Archie, G.E. Classification of Carbonate Reservoir Rocks and Petrophysical Considerations. AAPG Bull. 1952, 36, 278–298. [Google Scholar] [CrossRef]
- Malkewicz Hueni Associates Inc. MHA-P3; Malkewicz Hueni Associates Inc.: Golden, CO, USA, 2002. [Google Scholar]
- Red Natura 2000. Red Ecológica Europea de Áreas de Conservación de la Biodiversidad. Vicepresidencia Tercera del Gobierno. Ministerio para la Transición Ecológica y el Reto Demográfico. Available online: https://www.miteco.gob.es/es/biodiversidad/temas/espacios-protegidos/red-natura-2000/ (accessed on 14 June 2022).
- Fanchi, J.R. 8—Well Testing. In Integrated Reservoir Asset Management: Principles and Best Practices; Gulf Professional Publishing: Houston, TX, USA, 2010; pp. 125–144. [Google Scholar] [CrossRef]
- Eurostat (Online Data codes: nrg_pc_202 and 203). Second Half 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Natural_gas_price_statistics (accessed on 8 June 2022).
- Boning, Z.; Baochao, S.; Yulong, Z.; Liehui, Z. Review of Formation and Gas Characteristics in Shale Gas Reservoirs. Energies 2020, 13, 5427. [Google Scholar] [CrossRef]
- Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources; U.S. Environmental Protection Agency: Washington, DC, USA, 2011; p. 174.
- Water management associated with hydraulic fracturing. API Guidance Document HF2, 1st ed.; American Petroleum Institute: Washington, DC, USA, 2010. [Google Scholar]
- Veil, J.A.; Environmental Science Division. Water Management Technologies Used by Marcellus Shale Gas Producers; Argonne National Lab (ANL): Argonne, IL, USA, 2010. [Google Scholar] [CrossRef] [Green Version]
- Zoback, M.; Kitasei, S.; Copithorne, B. Addressing the Environmental Risks from Shale Gas Development; Worldwatch Institute: Washington, DC, USA, 2010. [Google Scholar]
- EPA. Proceedings of the Technical Workshops for the Hydraulic Fracturing Study: Chemical & Analytical Methods; US Environmental Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- Jackson, R.B.; Pearson, B.R.; Osborn, S.G.; Warner, N.R.; Vengosh, A. Research and Policy Recommendations for Hydraulic Fracturing and Shale—Gas Extraction; Center on Global Change, Duke University: Durham, NC, USA, 2011. [Google Scholar]
- Arthur, J.; Bohm, B.; Coughlin, B.J.; Layne, M.; Cornue, D. Evaluating the environmental implications of hydraulic fracturing in shale gas reservoirs. In Proceedings of the SPE Americas E&P Environmental and Safety Conference, San Antonio, TX, USA, 23–25 March 2009. [Google Scholar] [CrossRef] [Green Version]
- Osborn, S.G.; Vengosh, A.M.; Warner, N.R.; Jackson, R.B. Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc. Natl. Acad. Sci. USA 2011, 108, 8172–8176. [Google Scholar] [CrossRef] [Green Version]
- Schon, S.C. Hydraulic fracturing not responsible for methane migration. Proc. Natl. Acad. Sci. USA 2011, 108, E664. [Google Scholar] [CrossRef] [Green Version]
- Warner, N.R.; Jackson, R.B.; Darrah, T.H.; Osborn, S.G.; Down, A.; Zhao, K.; White, A.; Vengosh, A. Geochemical evidence for possible natural migration of Marcellus formation brine to shallow aquifers in Pennsylvania. Proc. Natl. Acad. Sci. USA 2012, 109, 11961–11966. [Google Scholar] [CrossRef] [Green Version]
- Rahm, B.G.; Bates, J.T.; Bertoia, L.R.; Galford, A.E.; Yoxtheimer, D.A.; Riha, S.J. Wastewater management and Marcellus Shale gas development: Trends, drivers, and planning implications. J. Environ. Manag. 2013, 120, 105–113. [Google Scholar] [CrossRef]
- Rozell, D.J.; Reaven, S.J. Water pollution risk associated with natural gas extraction from the Marcellus shale. Risk Anal. 2012, 32, 1382–1393. [Google Scholar] [CrossRef]
- Nicot, J.P.; Scanlon, B.R. Water use for shale-gas production in Texas. US. Environ. Sci. Technol. 2012, 46, 3580–3586. [Google Scholar] [CrossRef]
- Kargbo, D.M.; Wilhelm, R.G.; Campbell, D.J. Natural gas plays in the Marcellus shale: Challenges and potential opportunities. Environ. Sci. Technol. 2010, 44, 5679–5684. [Google Scholar] [CrossRef]
- COP26-Glasgow Agreements. Available online: https://www.un.org/es/climatechange/cop26 (accessed on 8 June 2022).
- IPCC Guidelines for National Greenhouse Gas Inventories; The Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006.
- US Energy-Related CO2 Emissions Rose 6% in 2021 (13th May 2021). Today Energy. US Energy Information Administration. Available online: https://www.eia.gov/todayinenergy/detail.php?id=52380#:~:text=In%202021%2C%20U.S.%20energy%2Drelated,19%20pandemic%20began%20to%20subside (accessed on 14 July 2022).
- Global Energy Review: CO2 Emissions in 2021—Analysis—IEA. Available online: https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2 (accessed on 14 July 2022).
- EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2020; U.S. Environmental Protection Agency: Washington, DC, USA, 2022; Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks (accessed on 27 May 2022).
- Matthews, H.S.; Hendrickson, C.T.; Weber, C.L. The importance of carbon footprint estimation boundaries. Environ. Sci. Technol. 2008, 42, 5839–5842. [Google Scholar] [CrossRef] [Green Version]
- Wigley, T. Coal to gas: The influence of methane leakage. Clim. Chang. 2011, 108, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Townsend Small, A.; Tyler, S.C.; Pataki, D.E.; Xu, X.; Christensen, L.E. Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of fugitive fossil fuel emissions. J. Geophys. Res. 2012, 117, D7. [Google Scholar] [CrossRef]
- Cathles, L.; Brown, L.; Taam, M.; Hunter, A. A commentary on the greenhouse-gas footprint of natural gas in shale formations. Clim. Chang. 2012, 113, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Cokar, M.; Ford, B.; Gieg, L.M.; Kallos, M.S.; Gates, I.D. Reactive reservoir simulation of biogenic shallow shale gas systems enabled by experimentally determined methane generation rates. Energy Fuels 2013, 27, 2413–2421. [Google Scholar] [CrossRef]
- Stephenson, T.; Valle, J.E.; Riera-Palou, X. Modeling the relative GHG emissions of conventional and shale gas production. Environ. Sci. Technol. 2011, 45, 10757–10764. [Google Scholar] [CrossRef] [PubMed]
- Das, I.; Zoback, M.D. Long-period, long-duration seismic events during hydraulic fracture stimulation of a shale gas reservoir. Lead. Edge 2011, 30, 778–786. [Google Scholar] [CrossRef]
- Finkel, M.; Hays, J.; Law, A. The shale gas boom and the need for rational policy. Am. J. Public Health 2013, 103, 1161–1163. [Google Scholar] [CrossRef]
- IOM (Institute of Medicine). Health Impact Assessment of Shale Gas Extraction: Workshop Summary; The National Academies Press: Washington, DC, USA, 2014. [Google Scholar]
- McDermott-Levy, R.; Kaktins, N.; Sattler, B. Fracking the environment, and health. AJN Am. J. Nurs. 2013, 113, 45–51. [Google Scholar] [CrossRef]
- Schmidt, C.W. Blind rush? Shale gas boom proceeds amid human health questions. Environ. Health Perspect. 2011, 119, 348–353. [Google Scholar] [CrossRef]
- Holzman, D.C. Methane found in well water near fracking sites. Environ. Health Perspect. 2011, 119, 119–289. [Google Scholar] [CrossRef]
- Litovitz, A.; Curtright, A.; Abramzon, S.; Burger, N.; Samaras, C. Estimation of regional air-quality damages from Marcellus Shale natural gas extraction in Pennsylvania. Environ. Res. Lett. 2013, 8, 014017. [Google Scholar] [CrossRef]
- Oil and Natural Gas Sector: New Source Performance Standards and National Emission Standards for Hazardous Air Pollutants Reviews; U.S. Environmental Protection Agency: Washington, DC, USA, 2018; pp. 52738–52843.
Well | Top-Bottom Measurement (ft) | Thickness of the Layer (ft) |
---|---|---|
Pamplona-2 | * 0–1446.85 | 1446.85 |
Pamplona-3 | * 0–1295.93 | 1295.93 |
Aoiz-1 | * 0–1391.08 | 1391.08 |
San Vicente-1 | 6253.27–14,750.65 | 8497.38 |
Serrablo-13 | 656.16–11,154.85 | 10,498.69 |
Serrablo-7 | 2595.14–10,672.56 | 8077.43 |
Depth (m) | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 |
---|---|---|---|---|---|---|---|---|
63 | 64 | 50 | 47.5 | 65 | 68.5 | 60 | 50 |
Well | Thickness (m) | OGIP (Bsm3) |
---|---|---|
Pamplona-2 | 441 | 23.07 |
Pamplona-3 | 395 | 20.67 |
Aoiz-1 | 424 | 22.18 |
San Vicente-1 | 2590 | 135.53 |
Serrablo-13 | 3200 | 167.45 |
Serrablo-7 | 2462 | 128.83 |
Total | 497.75 |
Production (MMsm3) | |||
---|---|---|---|
Opciones | Annual Year 1st | Cumulative 20 Years | |
Case 1 | Open hole | 3.83 | 14.96 |
Case 2 | Open hole + 50% fracking | 5.69 | 21.58 |
Case 3 | Open hole + 100% fracking | 7.39 | 28.61 |
Estimated Field Production (MMsm3) | |||
---|---|---|---|
Case 1: Open Hole | Case 2: Open Hole +50% Fracking | Case 3: Open Hole +100% Fracking | |
First year | 19,887.7 | 29,531.1 | 38,354.1 |
Average 2nd–7th year | 4054.58 | 5994.15 | 7914.71 |
Cumulative 20 years | 77,642.4 | 112,000.2 | 148,485.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valle-Falcones, L.M.; Grima-Olmedo, C.; Rodríguez-Pons Esparver, R.; Zamarro-Toves, E. Evaluation and Economics of Shale Gas Reserves in the Flysch-Eocene Formation of the Jaca Basin. Appl. Sci. 2023, 13, 1732. https://doi.org/10.3390/app13031732
Valle-Falcones LM, Grima-Olmedo C, Rodríguez-Pons Esparver R, Zamarro-Toves E. Evaluation and Economics of Shale Gas Reserves in the Flysch-Eocene Formation of the Jaca Basin. Applied Sciences. 2023; 13(3):1732. https://doi.org/10.3390/app13031732
Chicago/Turabian StyleValle-Falcones, Laura M., Carlos Grima-Olmedo, Ramón Rodríguez-Pons Esparver, and Enrique Zamarro-Toves. 2023. "Evaluation and Economics of Shale Gas Reserves in the Flysch-Eocene Formation of the Jaca Basin" Applied Sciences 13, no. 3: 1732. https://doi.org/10.3390/app13031732
APA StyleValle-Falcones, L. M., Grima-Olmedo, C., Rodríguez-Pons Esparver, R., & Zamarro-Toves, E. (2023). Evaluation and Economics of Shale Gas Reserves in the Flysch-Eocene Formation of the Jaca Basin. Applied Sciences, 13(3), 1732. https://doi.org/10.3390/app13031732