Practical Approach for Assessing Wetting-Induced Slope Failure
Abstract
:1. Introduction
2. Site Overview of Cimanggung Slope Failure
- (a)
- Jatinangor district (143 mm/day);
- (b)
- UNPAD Jatinangor (99 mm/day);
- (c)
- Tanjung Sari (104 mm/day);
- (d)
- AWS Cikancung (69.8 mm/day).
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fredlund, D.G.; Rahardjo, H.; Fredlund, M.D. Unsaturated Soil Mechanics in Engineering Practice; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Fredlund, D.G.; Morgenstern, N.R.; Widger, R.A. The shear strength of unsaturated soils. Can. Geotech. J. 1978, 15, 313–321. [Google Scholar] [CrossRef]
- Sun, D.-M.; Li, X.-M.; Feng, P.; Zang, Y.-G. Stability analysis of unsaturated soil slope during rainfall infiltration using coupled liquid-gas-solid three-phase model. Water Sci. Eng. 2016, 9, 183–194. [Google Scholar] [CrossRef]
- Satyanaga, A.; Kim, Y.; Hamdany, A.H.; Nistor, M.-M.; Sham, A.W.L.; Rahardjo, H. Chapter 12—Preventive measures for rainfall-induced slope failures in Singapore. In Climate and Land Use Impacts on Natural and Artificial Systems; Nistor, M.-M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 205–223. [Google Scholar]
- Rahardjo, H.; Ong, T.H.; Rezaur, R.B.; Leong, E.C. Factors Controlling Instability of Homogeneous Soil Slopes under Rainfall. J. Geotech. Geoenviron. Eng. 2007, 133, 1532–1543. [Google Scholar] [CrossRef]
- Zhenlei, W.; Shang, Y.-Q.; Sun, H.-Y.; Xu, H.-D.; Wang, D.-F. The effectiveness of a drainage tunnel in increasing the rainfall threshold of a deep-seated landslide. Landslides 2019, 16, 1731–1744. [Google Scholar] [CrossRef]
- Zhang, L.L.; Fredlund, M.D.; Fredlund, D.G.; Lu, H.; Wilson, G.W. The influence of the unsaturated soil zone on 2-D and 3-D slope stability analyses. Eng. Geol. 2015, 193, 374–383. [Google Scholar] [CrossRef]
- Rahardjo, H.; Satyanaga, A.; Leong, E.; Din, F.; Song, N.; Looi, W. Slope Failures in Singapore Due to Rainfall; Nanyang Technological University: Singapore, 2007. [Google Scholar]
- Sengani, F.; Mulenga, F. Influence of Rainfall Intensity on the Stability of Unsaturated Soil Slope: Case Study of R523 Road in Thulamela Municipality, Limpopo Province, South Africa. Appl. Sci. 2020, 10, 8824. [Google Scholar] [CrossRef]
- Ijaz, N.; Ye, W.; Rehman, Z.u.; Dai, F.; Ijaz, Z. Numerical study on stability of lignosulphonate-based stabilized surficial layer of unsaturated expansive soil slope considering hydro-mechanical effect. Transp. Geotech. 2022, 32, 100697. [Google Scholar] [CrossRef]
- Sun, H.-Y.; Wu, X.; Wang, D.-F.; Xu, H.-D.; Liang, X.; Shang, Y.-Q. Analysis of deformation mechanism of landslide in complex geological conditions. Bull. Eng. Geol. Environ. 2019, 78, 4311–4323. [Google Scholar] [CrossRef]
- Ip, S.C.Y.; Rahardjo, H.; Satyanaga, A. Three-dimensional slope stability analysis incorporating unsaturated soil properties in Singapore. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2021, 15, 98–112. [Google Scholar] [CrossRef]
- Das, P.; Bharat, T.V. Reconstruction of a wetting-induced shallow landslide in Shiillong, India. Proc. Inst. Civ. Eng. 2020, 173, 48–53. [Google Scholar]
- Wijaya, M.; Leong, E.C. Discussion of “Permeability function for oil sands tailings undergoing volume change during drying”. Can. Geotech. J. 2018, 56, 1–3. [Google Scholar] [CrossRef]
- Zhang, F.; Wilson, G.W.; Fredlund, D.G. Permeability function for oil sands tailings undergoing volume change during drying. Can. Geotech. J. 2017, 55, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, K.; Kim, J.M.; Ashraf, M.; Ziaurrehman. The effect of soil type on matric suction and stability of unsaturated slope under uniform rainfall. KSCE J. Civ. Eng. 2016, 20, 1294–1299. [Google Scholar] [CrossRef]
- Brand, E.W. Slope instability in Tropical Areas. In Proceedings of the 6th International Symposium on Landslides, Christchurch, New Zealand, 10 February 1992; pp. 20131–22051. [Google Scholar]
- Rahardjo, H.; Nio, A.S.; Eng Choon, L.; Ng Yew, S. Effects of Groundwater Table Position and Soil Properties on Stability of Slope during Rainfall. J. Geotech. Geoenviron. Eng. 2010, 136, 1555–1564. [Google Scholar] [CrossRef]
- Yao, Y.; Li, J.; Xiao, Z.; Xiao, H. Soil-Water Characteristics and Creep Deformation of Unsaturated Expansive Subgrade Soil: Experimental Test and Simulation. Front. Earth Sci. 2021, 9, 1141. [Google Scholar] [CrossRef]
- Wijaya, M.; Leong, E.C.; Rahardjo, H. Effect of shrinkage on air-entry value of soils. Soils Found. 2015, 55, 166–180. [Google Scholar] [CrossRef] [Green Version]
- Wijaya, M.; Leong, E.C. Equation for unimodal and bimodal soil–water characteristic curves. Soils Found. 2016, 56, 291–300. [Google Scholar] [CrossRef]
- Hamdany, A.H.; Shen, Y.; Satyanaga, A.; Rahardjo, H.; Lee, T.-T.D.; Nong, X. Field instrumentation for real-time measurement of soil-water characteristic curve. Int. Soil Water Conserv. Res. 2022, 10, 586–596. [Google Scholar] [CrossRef]
- Ijaz, N.; Rehman, Z.u.; Ijaz, Z. Recycling of paper/wood industry waste for hydromechanical stability of expansive soils: A novel approach. J. Clean. Prod. 2022, 348, 131345. [Google Scholar] [CrossRef]
- Kovacs, G. Seepage Hydraulics, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Aubertin, M.; Mbonimpa, M.; Bussière, B.; Chapuis, R.P. A model to predict the water retention curve from basic geotechnical properties. Can. Geotech. J. 2003, 40, 1104–1122. [Google Scholar] [CrossRef]
- Chin, K.B.; Leong, E.C.; Rahardjo, H. A simplified method to estimate the soil-water characteristic curve. Can. Geotech. J. 2010, 47, 1382–1400. [Google Scholar] [CrossRef]
- SoilVision; SoilVision System Ltd.: Saskatoon, SK, Canada, 2003.
- Nemes, A.; Schaap, M.; Leij, F.; Wösten, J. UNSODA 2.0: Unsaturated Soil Hydraulic Database. Database and Program for Indirect Methods of Estimating Unsaturated Hydraulic Properties, 2nd ed.; US Salinity Laboratory, ARS, USDA: Washington, DC, USA, 2018.
- Nemes, A.; Schaap, M.G.; Leij, F.J.; Wösten, J.H.M. Description of the unsaturated soil hydraulic database UNSODA version 2.0. J. Hydrol. 2001, 251, 151–162. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A. Equations for the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A.; Huang, S. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 533–546. [Google Scholar] [CrossRef] [Green Version]
- UInspire. Situation Report #8 Rrespon Bencana Longsor Kampung Daud/Bojong Kondang, Desa Cihanjuang, Kec. Cimanggung, Kab. Sumedang, Prov. Jawa Barat; UInspire: Sumedang, Indonesia, 2020. [Google Scholar]
- Bar, N.; Kostadinovski, M.; Tucker, M.; Byng, G.; Rachmatullah, R.; Maldonado, A.; Pötsch, M.; Gaich, A.; McQuillan, A.; Yacoub, T. Rapid and robust slope failure appraisal using aerial photogrammetry and 3D slope stability models. Int. J. Min. Sci. Technol. 2020, 30, 651–658. [Google Scholar] [CrossRef]
- Gonizzi Barsanti, S.; Remondino, F.; Visintini, D. 3D Surveying and Modeling of Archaeological Sites—Some Critical Issues. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, II-5/W1, 145–150. [Google Scholar] [CrossRef]
- Manousakis, J.; Zekkos, D.; Saroglou, H.; Kallimogiannis, V.; Bar, N. Analysis of slope instabilities in the Corinth Canal using UAV-enabled mapping. In Proceedings of the ICONHIC 2nd International Conference on Natural Hazards & Infrastructure, Chania, Greece, 23–26 June 2019. [Google Scholar]
- Wesley, L.D. Geotechnical Engineering in Residual Soils; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
BH | Coordinate: UTM 48 M | Elevation (m) | Depth (m) | GWL | |
---|---|---|---|---|---|
Easting | Northing | (m) | |||
BH-1 | 811,380 | 9,230,325 | 732.29 | 18 | * |
BH-2 | 811,427 | 9,230,270 | 728.95 | 24 | 20.5 |
BH-3 | 811,421 | 9,230,173 | 726.62 | 9.5 | 8.5 |
S-01 | 811,427 | 9,230,263 | 729.08 | 7.6 | - |
S-02 | 811,446 | 9,230,237 | 731.51 | 9.4 | - |
S-03 | 811,432 | 9,230,218 | 726.88 | 5.0 | - |
S-04 | 811,411 | 9,230,259 | 719.27 | 3.2 | - |
S-05 | 811,353 | 9,230,304 | 716.06 | 5.0 | - |
S-06 | 811,414 | 9,230,142 | 722.58 | 4.0 | - |
S-07 | 811,413 | 9,230,244 | 712.67 | 5.2 | - |
S-08 | 811,413 | 9,230,228 | 715.21 | 3.8 | - |
S-09 | 811,355 | 9,230,200 | 696.07 | 3.4 | - |
Borehole No. | BH-01 | BH-02 | BH-03 | |
---|---|---|---|---|
Sample Depth, m | 6.00–6.50 | 2.50–3.00 | 2.00–2.50 | |
Specific Gravity, Gs | 2.58 | 2.55 | 2.53 | |
Liquid Limit (wL) | 46.56 | - | 53.71 | |
Plastic Limit (wP) | 31.20 | - | 31.18 | |
Index Plasticity (IP) | 15.36 | - | 22.53 | |
Wet Density, gr/cm3 | 1.77 | 1.88 | 1.77 | |
Dry Density, gr/cm3 | 1.25 | 1.45 | 1.26 | |
Natural Water Content, % | 40.41 | 30.12 | 36.47 | |
Void Ratio, e | 1.06 | 0.76 | 1.00 | |
Porosity, n | 0.52 | 0.43 | 0.50 | |
Grain Size | Gravel, % | 0.00 | 15.72 | 0.00 |
Coarse Sand, % | 4.13 | 11.77 | 0.66 | |
Medium Sand, % | 8.41 | 13.59 | 4.04 | |
Fine Sand, % | 15.96 | 19.46 | 11.13 | |
Silt, % | 38.80 | 26.13 | 43.62 | |
Clay, % | 32.70 | 13.33 | 40.55 |
Soil Type | MaterialMmodel | k | Unit Weight (kN/m3) | Su | c′ | ϕ′ | ϕb |
---|---|---|---|---|---|---|---|
(kPa) | (kPa) | (°) | (°) | ||||
Volcanic Soil | Mohr–Coulomb | 1 × 10−6 | 18.8 | - | 10 | 26 | 13 |
Stiff Clay | Undrained (phi = 0) | 1 × 10−8 | 19 | 170 | - | - | - |
Bedrock | Bedrock (Impermeable) | 1 × 10−9 | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adiguna, G.A.; Wijaya, M.; Rahardjo, P.P.; Sugianto, A.; Satyanaga, A.; Hamdany, A.H. Practical Approach for Assessing Wetting-Induced Slope Failure. Appl. Sci. 2023, 13, 1811. https://doi.org/10.3390/app13031811
Adiguna GA, Wijaya M, Rahardjo PP, Sugianto A, Satyanaga A, Hamdany AH. Practical Approach for Assessing Wetting-Induced Slope Failure. Applied Sciences. 2023; 13(3):1811. https://doi.org/10.3390/app13031811
Chicago/Turabian StyleAdiguna, Glenn Adriel, Martin Wijaya, Paulus Pramono Rahardjo, Andy Sugianto, Alfrendo Satyanaga, and Abdul Halim Hamdany. 2023. "Practical Approach for Assessing Wetting-Induced Slope Failure" Applied Sciences 13, no. 3: 1811. https://doi.org/10.3390/app13031811
APA StyleAdiguna, G. A., Wijaya, M., Rahardjo, P. P., Sugianto, A., Satyanaga, A., & Hamdany, A. H. (2023). Practical Approach for Assessing Wetting-Induced Slope Failure. Applied Sciences, 13(3), 1811. https://doi.org/10.3390/app13031811