The Impact of a Novel Neuromuscular Training Program on Leg Stiffness, Reactive Strength, and Landing Biomechanics in Amateur Female Rugby Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Leg Stiffness
2.2.2. Reactive Strength Index
2.2.3. Landing Error Scoring System
2.2.4. Training Intervention
2.2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Changes in Reactive Strength Index
4.2. Changes in Leg Stiffness
4.3. Changes in the Landing Error Scoring System
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palmer-Green, D.S.; Stokes, K.A.; Fuller, C.W.; England, M.; Kemp, S.P.T.; Trewartha, G. Match injuries in English youth academy and schools rugby union: An epidemiological study. Am. J. Sports Med. 2013, 41, 749–755. [Google Scholar] [CrossRef]
- Dallalana, R.J.; Brooks, J.H.M.; Kemp, S.P.T.; Williams, A.M. The epidemiology of knee injuries in English professional rugby union. Am. J. Sports Med. 2007, 35, 818–830. [Google Scholar] [CrossRef]
- Fuller, C.W.; Taylor, A.E.; Kemp, S.P.T.; Raftery, M. Rugby World Cup 2015: World Rugby injury surveillance study. Br. J. Sports Med. 2017, 51, 51–57. [Google Scholar] [CrossRef]
- Carrasco-Huenulef, C.; Poblete-Garrido, M.; Monrroy-Uarac, M.; Ramirez-Campillo, R.; Moran, J.; Gajardo-Burgos, R. Effects of a neuromuscular training program on anterior cruciate ligament injury risk factors in youth female basketball players: A pilot study. Gazz. Med. Ital. Arch. Sci. Med. 2019, 178, 137–144. [Google Scholar] [CrossRef]
- Fuller, C.W.; Taylor, A.E.; Raftery, M. Should player fatigue be the focus of injury prevention strategies for international rugby sevens tournaments? Br. J. Sports Med. 2016, 50, 682–687. [Google Scholar] [CrossRef]
- Renstrom, P.; Ljungqvist, A.; Arendt, E.; Beynnon, B.; Fukubayashi, T.; Garrett, W.; Georgoulis, T.; Hewett, T.E.; Johnson, R.; Krosshaug, T.; et al. Non-contact ACL injuries in female athletes: An International Olympic Committee current concepts statement. Br. J. Sports Med. 2008, 42, 394–412. [Google Scholar] [CrossRef]
- Takazawa, Y.; Nagayama, M.; Ikeda, H.; Kawasaki, T.; Ishijima, M.; Saita, Y.; Kaneko, H.; Kobayashi, Y.; Hada, S.; Kaneko, K. Anterior cruciate ligament injuries in elite and high school rugby players: A 11year review. Phys. Sports Med. 2015, 44, 53–58. [Google Scholar] [CrossRef]
- Gillot, T.; L’Hermette, M.; Garnier, T.; Tourny-Chollet, C. Effect of fatigue on functional stability of the knee: Particularities of female handbal players. Int. J. Sports Med. 2019, 40, 468–476. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; Hewett, T.E. Rationale and clinical techniques for anterior cruciate ligament injury prevention among female athletes. J. Athl. Train. 2004, 39, 352–364. [Google Scholar]
- Agel, J.; Arendt, E.A.; Bershadsky, B. Anterior cruciate ligament injury in National Collegiate Athletic Association basketball and soccer: A 13 year review. Am. J. Sports Med. 2005, 33, 524–531. [Google Scholar] [CrossRef]
- Bram, J.T.; Magee, L.C.; Mehta, N.N.; Patel, N.M.; Ganley, T.J. Anterior cruciate ligament injury incidence in adolescent athletes: A systematic review and meta-analysis. Am. J. Sports Med. 2020, 49, 1962–1972. [Google Scholar] [CrossRef]
- Hughes, G.; Watkins, J. A risk-factor model for anterior cruciate ligament injury. Sports Med. 2006, 36, 411–428. [Google Scholar] [CrossRef]
- Lim, B.O.; Lee, Y.S.; Kim, J.G.; An, K.O.; Yoo, J.; Kwon, Y.H. Effects of sports injury prevention training on the biomechanical risk factors of anterior cruciate ligament injury in high school female basketball players. Am. J. Sports Med. 2009, 37, 1728–1734. [Google Scholar] [CrossRef]
- Faude, O.; Rössler, R.; Petushek, E.J.; Roth, R.; Zahner, L.; Donath, L. Neuromuscular adaptations to multimodal injury prevention programs in youth sports: A systematic review with meta-analysis of randomized controlled trials. Front. Physiol. 2017, 8, 791. [Google Scholar] [CrossRef]
- Benjaminse, A.; Habu, A.; Sell, T.C.; Abt, J.P.; Fu, F.H.; Myers, J.B.; Lephart, S.M. Fatigue alters lower extremity kinematics during a single-leg stop-jump task. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 400–407. [Google Scholar] [CrossRef]
- Comuk, N.; Erden, Z. The effect of muscular strength and endurance on technical skill in professional figure skaters. Isokinet. Exerc. Sci. 2012, 20, 85–90. [Google Scholar] [CrossRef]
- De Ste Croix, M.B.A.; Hughes, J.D.; Lloyd, R.S.; Oliver, J.L.; Read, P.J. Leg stiffness in female soccer players: Intersession reliability and the fatiguing effects of soccer-specific exercise. J. Strength Cond. Res. 2017, 31, 3052–3058. [Google Scholar] [CrossRef]
- Raschner, C.; Platzer, H.P.; Patterson, C.; Werner, I.; Huber, R.; Hildebrandt, C. The relationship between ACL injuries and physical fitness in young competitive ski racers: A 10-year longitudinal study. Br. J. Sports Med. 2012, 46, 1065–1071. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Hughes, M.G.; Williams, C.A. Reliability and validity of field-based measures of leg stiffness and reactive strength index in youths. J. Sports Sci. 2009, 27, 1565–1573. [Google Scholar] [CrossRef]
- Flanagan, E.P.; Comyns, T.M. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond. J. 2008, 30, 32–38. [Google Scholar] [CrossRef]
- Padua, D.A.; Garcia, C.R.; Arnold, B.L.; Granata, K.P. Gender differences in leg stiffness and stiffness recruitment strategy during two-legged hopping. J. Mot. Behav. 2005, 37, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Padua, D.A.; Arnold, B.L.; Perrin, D.H.; Gansneder, B.M.; Carcia, C.R.; Granata, K.P. Fatigue, vertical leg stiffness, and stiffness control strategies in males and females. J. Athl. Train. 2006, 41, 294–304. [Google Scholar]
- Ward, R.E.; Fong Yan, A.; Orishimo, K.F.; Kremenic, I.J.; Hagins, M.; Liederbach, M.; Hiller, C.E.; Pappas, E. Comparison of lower limb stiffness between male and female dancers and athletes during drop jump landings. Scand. J. Med. Sci. Sports 2019, 29, 71–81. [Google Scholar] [CrossRef]
- Laffaye, G.; Choukou, M.A.; Benguigui, N.; Padulo, J. Age-and gender-related development of stretch shortening cycle during a sub-maximal hopping task. Biol. Sport 2016, 33, 29–35. [Google Scholar] [CrossRef]
- Rubio-Peirotén, A.; García-Pinillos, F.; Jaén-Carrillo, D.; Cartón-Llorente, A.; Roche-Seruendo, L.E. Is there a relationship between the morphology of connective tissue and reactivity during a drop jump? Influence of sex and athletic performance level. Int. J. Environ. Res. Public Health 2021, 18, 1969. [Google Scholar] [CrossRef]
- Flaxman, T.E.; Smith, A.J.J.; Benoit, D.L. Sex-related differences in neuromuscular control: Implications for injury mechanisms or healthy stabilisation strategies? J. Orthop. Res. 2014, 32, 310–317. [Google Scholar] [CrossRef]
- Begalle, R.L.; Walsh, M.C.; McGrath, M.L.; Boling, M.C.; Blackburn, J.T.; Padua, D.A. Ankle dorsiflexion displacement during landing is associated with initial contact kinematics but not joint displacement. J. Appl. Biomech. 2015, 31, 205–210. [Google Scholar] [CrossRef]
- Leppänen, M.; Pasanen, K.; Kujala, U.M.; Vasankari, T.; Kannus, P.; Äyrämö, S.; Krosshaug, T.; Bahr, R.; Avela, J.; Perttunen, J.; et al. Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. Am. J. Sports Med. 2017, 45, 386–393. [Google Scholar] [CrossRef]
- Powers, C.M. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: A theoretical perspective. J. Orthop. Sports Phys. Ther. 2003, 33, 639–646. [Google Scholar] [CrossRef]
- Hanzlíková, I.; Hébert-Losier, K. Is the Landing Error Scoring System reliable and valid? A systematic review. Sports Health 2020, 12, 181–188. [Google Scholar] [CrossRef]
- Padua, D.A.; DiStefano, L.J.; Beutler, A.I.; De La Motte, S.J.; DiStefano, M.J.; Marshall, S.W. The Landing Error Scoring System as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes. J. Athl. Train. 2015, 50, 589–595. [Google Scholar] [CrossRef]
- Kiani, A.; Hellquist, E.; Ahlqvist, K.; Gedeborg, R.; Michaëlsson, K.; Byberg, L. Prevention of soccer-related knee injuries in teenaged girls. Arch. Intern. Med. 2010, 170, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Rössler, R.; Donath, L.; Verhagen, E.; Junge, A.; Schweizer, T.; Faude, O. Exercise-based injury prevention in child and adolescent sport: A systematic review and meta-analysis. Sports Med. 2014, 44, 1733–1748. [Google Scholar] [CrossRef]
- Gebel, A.; Prieske, O.; Behm, D.G.; Granacher, U. Effects of balance training on physical fitness in youth and young athletes: A narrative review. Strength Cond. J. 2020, 42, 35–44. [Google Scholar] [CrossRef]
- Holm, I.; Fosdahl, M.A.; Friis, A.; Risberg, M.A.; Myklebust, G.; Steen, H. Effect of neuromuscular training on proprioception, balance, muscle strength, and lower limb function in female team handball players. Clin. J. Sport Med. 2004, 14, 88–94. [Google Scholar] [CrossRef]
- Mandelbaum, B.R.; Silvers, H.J.; Watanabe, D.S.; Knarr, J.F.; Thomas, S.D.; Griffin, L.Y.; Kirkendall, D.T.; Garrett, W. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am. J. Sports Med. 2005, 33, 1003–1010. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; McLean, S.G.; Hewett, T.E. The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics. Am. J. Sports Med. 2006, 34, 445–455. [Google Scholar] [CrossRef]
- Monajati, A.; Larumbe-Zabala, E.; Goss-Sampson, M.; Naclerio, F. The effectiveness of injury prevention programs to modify risk factors for non-contact anterior cruciate ligament and hamstring injuries in uninjured team sports athletes: A systematic review. PLoS ONE 2016, 11, e0155272. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Paterno, M.V.; Quatman, C.E. Mechanisms, prediction, and prevention of ACL injuries: Cut risk with three sharpened and validated tools. J. Orthop. Res. 2016, 34, 1843–1855. [Google Scholar] [CrossRef]
- Myklebust, G.; Engebretse, L.; Braekken, H.I.; Skjolberg, A.; Olsen, E.O.; Bahr, R. Prevention of anterior cruciate ligament injuries in female team handball players: A prospective intervention study over three seasons. Clin. J. Sport Med. 2003, 13, 71–78. [Google Scholar] [CrossRef]
- Evans, K.L.; Hughes, J.; Williams, M.D. Reduced severity of lumbo-pelvic-hip injuries in professional Rugby Union players following tailored preventative programmes. J. Sci. Med. Sport 2018, 21, 274–279. [Google Scholar] [CrossRef]
- Hislop, M.D.; Stokes, K.A.; Williams, S.; McKay, C.D.; England, M.E.; Kemp, S.P.T.; Trewartha, G. The efficacy of a movement control exercise programme to reduce injuries in youth rugby: A cluster randomised controlled trial. BMJ Open Sport Exerc. Med. 2016, 2, e000043. [Google Scholar] [CrossRef] [Green Version]
- Leahy, T.M.; Kenny, I.C.; Campbell, M.J.; Warrington, G.S.; Cahalan, R.; Harrison, A.J.; Lyons, M.; Glynn, L.G.; Purtill, H.; Comyns, T.M. Injury surveillance and prevention practices across Rugby schools in Ireland. Phys. Ther. Sport 2020, 43, 134–142. [Google Scholar] [CrossRef]
- De Ste Croix, M.B.A.; Hughes, J.D.; Ayala, F.; Taylor, L.; Datson, N. Efficacy of injury prevention training is greater for high-risk vs low-risk elite female youth soccer players. Am. J. Sports Med. 2018, 46, 3271–3280. [Google Scholar] [CrossRef]
- O’Malley, E.; Murphy, J.C.; Persson, U.M.; Gissane, C.; Blake, C. The effects of the gaelic athletic association 15 training program on neuromuscular outcomes in gaelic football and hurling players: A randomized cluster trial. J. Strength Cond. Res. 2017, 31, 2119–2130. [Google Scholar] [CrossRef]
- Padua, D.A.; Marshall, S.W.; Boling, M.C.; Thigpen, C.A.; Garrett, W.E., Jr.; Beutler, A.I. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: The JUMP-ACL study. Am. J. Sports Med. 2009, 37, 1996–2002. [Google Scholar] [CrossRef]
- Dalleau, G.; Belli, A.; Viale, F.; Lacour, J.R.; Bourdin, M. A simple method for field measurements of leg stiffness in hopping. Int. J. Sports Med. 2004, 25, 170–176. [Google Scholar] [CrossRef]
- Lehnert, M.; Krejčí, J.; Janura, M.; De Ste Croix, M.B.A. Age-related changes in landing mechanics in elite male youth soccer players: A longitudinal study. Appl. Sci. 2022, 12, 5324. [Google Scholar] [CrossRef]
- Hanzlíková, I.; Athens, J.; Hébert-Losier, K. Clinical implications of Landing Error Scoring Systém calculation methods. Phys. Ther. Sport 2020, 44, 61–66. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef]
- Pallant, J. SPSS Survival Manual: A Step by Step Guide to Data Analysis Using the SPSS Program; Allen & Unwin: Berskshire, UK, 2011. [Google Scholar]
- Brughelli, M.; Cronin, J. A review of research on the mechanical stiffness in running and jumping: Methodology and implications. Scand. J. Med. Sci. Sports 2008, 18, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, P.; Turner, A.; Read, P.; Bishop, C. Reactive strength index and its associations with measures of physical and sports performance: A systematic review with meta-analysis. Sports Med. 2022, 52, 301–330. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Sole, C.J.; Bailey, C.A.; Grazer, J.L.; Beckham, G.K. A comparison of reactive strength index-modified between six U.S. Collegiate athletic teams. J. Strength Cond. Res. 2015, 29, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Lehnert, M.; De Ste Croix, M.B.A.; Svoboda, Z.; Elfmark, M.; Sikora, O.; Stastny, P. Gender and age related differences in leg stiffness and reactive strength in adolescent team sports players. J. Hum. Kinet. 2020, 74, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Oliver, J.L.; Hughes, M.G.; Williams, C.A. The influence of chronological age on periods of accelerated adaptation of stretch-shortening cycle performance in pre and postpubescent boys. J. Strength Cond. Res. 2011, 25, 1889–1897. [Google Scholar] [CrossRef]
- Beattie, K.; Carson, B.P.; Lyons, M.; Kenny, I.C. The relationship between maximal strength and reactive strength. Int. J. Sports Physiol. Perform. 2017, 12, 548–553. [Google Scholar] [CrossRef]
- Granata, K.P.; Padua, D.A.; Wilson, S.E. Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks. J. Electromyogr. Kinesiol. 2002, 12, 127–135. [Google Scholar] [CrossRef]
- Oliver, J.L.; Smith, P.M. Neural control of leg stiffness during hopping in boys and men. J. Electromyogr. Kinesiol. 2010, 20, 973–979. [Google Scholar] [CrossRef]
- Komi, P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000, 33, 1197–1206. [Google Scholar] [CrossRef]
- Akbari, H.; Sahebozamani, M.; Daneshjoo, A.; Amiri-Khorasani, M.; Shimokochi, Y. Effect of the FIFA 11+ on Landing Patterns and Baseline Movement Errors in Elite Male Youth Soccer Players. J. Sport Rehabil. 2019, 29, 730–737. [Google Scholar] [CrossRef]
- Pfile, K.R.; Gribble, P.A.; Buskirk, G.E.; Meserth, S.M.; Pietrosimone, B.G. Sustained improvements in dynamic balance and landing mechanics after a 6-week neuromuscular training program in college women’s basketball players. J. Sport Rehabil. 2016, 25, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Hanzlíková, I.; Athens, J.; Hébert-Losier, K. Factors influencing the Landing Error Scoring System: Systematic review with meta-analysis. J. Sci. Med. Sport 2021, 24, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Ford, K.R.; Myer, G.D. Anterior cruciate ligament injuries in female athletes: Part 2, a meta-analysis of neuromuscular interventions aimed at injury prevention. Am. J. Sports Med. 2006, 34, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Hanzlíková, I.; Richards, J.; Athens, J.; Hébert-Losier, K. Which jump-landing task best represents lower extremity and trunk kinematics of unanticipated cutting maneuver? Gait Posture 2021, 85, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Kristianslund, E.; Krosshaug, T. Comparison of drop jumps and sport-specific sidestep cutting: Implications for anterior cruciate ligament injury risk screening. Am. J. Sports Med. 2013, 41, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Lehnert, M.; De Ste Croix, M.B.A.; Šťastný, P.; Maixnerová, E.; Zaatar, A.; Botek, M.; Vařeková, R.; Hůlka, K.; Petr, M.; Elfmark, M.; et al. The Influence of Fatigue on Injury Risk in Male Youth Soccer; Palacký University Olomouc: Olomouc, Czech Republic, 2019. [Google Scholar] [CrossRef]
- Irmischer, B.S.; Harris, C.; Pfeiffer, R.P.; DeBeliso, M.A.; Adams, K.J.; Shea, K. Effect of a knee ligament injury prevention exercise program on impact forces in women. J. Strength Cond. Res. 2004, 18, 703–707. [Google Scholar]
- LaBella, R.C.; Huxford, R.M.; Grissom, J.; Kim, K.-Y.; Peng, J.; Christoffel, K.K. Effect of neuromuscular warm-up on injuries in female soccer and basketball athletes in urban public high schools. Arch. Pediatr. Adolesc. Med. 2011, 165, 1033–1040. [Google Scholar] [CrossRef]
- Barengo, N.C.; Meneses-Echavez, J.F.; Ramirez-Velez, R.; Cohen, D.D.; Tovar, G.; Bautista, J.E. The impact of the FIFA 11+ training program on injury prevention in football players: A systematic review. Int. J. Environ. Res. Public Health 2014, 11, 11986–12000. [Google Scholar] [CrossRef]
- Petersen, W.; Braun, C.; Bock, W.; Schmidt, K.; Weimann, A.; Drescher, W.; Eiling, E.; Stange, R.; Fuchs, T.; Hedderich, J.; et al. A controlled prospective case control study of a prevention training program in female team handball players: The German experience. Arch. Orthop. Trauma Surg. 2005, 125, 614–621. [Google Scholar] [CrossRef]
- Taylor, B.J.; Waxman, P.J.; Richter, J.S.; Shultz, J.S. Evaluation of the effectiveness of anterior cruciate ligament injury prevention programme training components: A systematic review and meta-analysis. Br. J. Sports Med. 2013, 49, 79–87. [Google Scholar] [CrossRef]
- Pryor, J.L.; Root, H.J.; Vandermark, L.W.; Pryor, R.R.; Martinez, J.C.; Trojian, T.H.; Denegar, C.R.; DiStefano, L.J. Coach-led preventive training program in youth soccer players improves movement technique. J. Sci. Med. Sport 2017, 20, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Scarneo, S.E.; Root, H.J.; Martinez, J.C.; Denegar, C.; Casa, D.J.; Mazerolle, S.M.; Dann, C.L.; Aerni, G.A.; DiStefano, L.J. Landing technique improvements after an aquatic-based neuromuscular training program in physically active women. J. Sport Rehabil. 2017, 26, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Attene, G.; Iuliano, E.; Di Cagno, A.; Calcagno, G.; Moalla, W.; Aquino, G.; Padulo, J. Improving neuromuscular performance in young basketball players: Plyometric vs. technique training. J. Sports Med. Phys. Fitness 2015, 55, 1–8. [Google Scholar]
- Nessler, T.; Denney, L.; Sampley, J. ACL injury prevention: What does research tell us? Curr. Rev. Musculoskel. Med. 2017, 10, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Zebis, M.K.; Andersen, L.L.; Brandt, M.; Myklebust, G.; Bencke, J.; Lauridsen, H.B.; Bandholm, T.; Thorborg, K.; Hölmich, P.; Aagaard, P. Effects of evidence-based prevention training on neuromuscular and biomechanical risk factors for ACL injury in adolescent female athletes: A randomised controlled trial. Br. J. Sports Med. 2016, 50, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Parsons, J.L.; Sylvester, R.; Porter, M.M. The effect of strength training on the jump-landing biomechanics of young female athletes: Results of a randomized controlled trial. Clin. J. Sports Med. 2017, 27, 127–132. [Google Scholar] [CrossRef] [PubMed]
Exercise Type | Duration | 1st Level | 2nd Level | 3rd Level | 4th Level |
---|---|---|---|---|---|
Balance | 30 s each | Single-leg high-knee balance | Single-leg balance forward | Single-leg balance forward and backward | Single-leg Y balance (forward, backward, lateral) |
30 s each | Lunge | Lunge with trunk turning | Lunge with weight ahead | Lunge with weight ahead and trunk turning | |
Strength | 1 min/30 s each | Supine glute bridge | Supine glute bridge with a band above the knees | Supine glute bridge on one leg 30 s one leg | Supine walking glute bridge |
30 s each | Lateral leg raises without power band | Clams without power band | Lateral leg raises with a power band | Clams with different sizes of power band | |
30 s | Bodyweight squat with calf raises | Bodyweight squat with calf raises and shoulder flexion | Bodyweight squat with calf raises with a band above the knees | Bodyweight squat with calf raises with a band above the knees and shoulder flexion | |
Plyometrics | 30 s | Forward and backward double-leg jumps | |||
30 s | Lateral single-leg jumps: from left to right (jump to the right) | ||||
30 s | Lateral single-leg jumps with rotation | ||||
30 s | Lateral single-leg cross jumps: from left to right (jump to the left) | ||||
15 s each | Forward and backward single-leg jumps |
Variable | Group | Median (IQR) | MD [95% CI] | p-Value | r-Value [95% CI] | |
---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | |||||
RSI | EG | 0.58 (0.30) | 0.86 (0.30) * | −0.19 [−0.31–−0.03] | 0.012 + | 0.70 [0.27–0.88] |
CG | 0.63 (0.33) | 0.59 (0.19) * | 0.04 [−0.07–0.14] | 0.531 | 0.19 [0.01–0.70] | |
ALS (kN·m–1) | EG | 25.98 (5.75) | 23.72 (5.29) | 1.58 [−0.65–3.11] | 0.110 | 0.48 [0.07–0.89] |
CG | 23.04 (4.92) | 22.60 (1.34) | 0.78 [−0.94–4.35] | 0.339 | 0.29 [0.02–0.82] | |
RLS | EG | 32.67 (7.86) | 30.48 (7.69) | 2.07 [−0.13–3.98] | 0.052 | 0.57 [0.11–0.89] |
CG | 27.58 (6.92) | 26.92 (4.34) | 1.68 [−0.22–5.76] | 0.052 | 0.57 [0.07–0.89] | |
LESS (errors) | EG | 5.00 (2.00) * | 4.33(1.33) * | 0.50 [−0.83–1.66] | 0.366 | 0.27 [0.00–0.82] |
CG | 7.33 (0.67) * | 6.17(1.33) * | 0.17 [−1.16–1.67] | 0.906 | 0.05 [0.00–0.69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, O.; Lehnert, M.; Hanzlíková, I.; Hughes, J. The Impact of a Novel Neuromuscular Training Program on Leg Stiffness, Reactive Strength, and Landing Biomechanics in Amateur Female Rugby Players. Appl. Sci. 2023, 13, 1979. https://doi.org/10.3390/app13031979
Sikora O, Lehnert M, Hanzlíková I, Hughes J. The Impact of a Novel Neuromuscular Training Program on Leg Stiffness, Reactive Strength, and Landing Biomechanics in Amateur Female Rugby Players. Applied Sciences. 2023; 13(3):1979. https://doi.org/10.3390/app13031979
Chicago/Turabian StyleSikora, Ondřej, Michal Lehnert, Ivana Hanzlíková, and Jonathan Hughes. 2023. "The Impact of a Novel Neuromuscular Training Program on Leg Stiffness, Reactive Strength, and Landing Biomechanics in Amateur Female Rugby Players" Applied Sciences 13, no. 3: 1979. https://doi.org/10.3390/app13031979
APA StyleSikora, O., Lehnert, M., Hanzlíková, I., & Hughes, J. (2023). The Impact of a Novel Neuromuscular Training Program on Leg Stiffness, Reactive Strength, and Landing Biomechanics in Amateur Female Rugby Players. Applied Sciences, 13(3), 1979. https://doi.org/10.3390/app13031979