Long- and Short-Term Stability of All Polarization-Maintaining Thulium Doped Passively Mode-Locked Fiber Lasers with Emission Wavelengths at 1.95 μm and 2.07 μm
Abstract
:Featured Application
Abstract
1. Introduction
2. Experimental Procedure
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rudy, C.W.; Digonnet, M.J.; Byer, R.L. Advances in 2-μm Tm-doped mode-locked fiber lasers. Opt. Fiber Technol. 2014, 20, 642–649. [Google Scholar] [CrossRef]
- Orr, B.J. Infrared LIDAR Applications in Atmospheric Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Koch, G.J.; Beyon, J.Y.; Gibert, F.; Barnes, B.W.; Ismail, S.; Petros, M.; Petzar, P.J.; Yu, J.; Modlin, E.A.; Davis, K.J.; et al. Side-line tunable laser transmitter for differential absorption LIDAR measurements of CO2: Design and application to atmospheric measurements. Appl. Opt. 2008, 47, 944–956. [Google Scholar] [CrossRef]
- Bertie, J.E.; Lan, Z. Infrared Intensities of Liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25 °C between 15,000 and 1 cm−1. Appl. Spectrosc. 1996, 50, 1047–1057. [Google Scholar] [CrossRef]
- Scholle, K.; Lamrini, S.; Koopmann, P.; Fuhrberg, P. 2 μm laser sources and their possible applications. In Frontiers in Guided Wave Optics and Optoelectronics; Pal, B., Ed.; INTECH Open Access Publisher: London, UK, 2010; p. 471. [Google Scholar] [CrossRef]
- Theisen, D.; Ott, V.; Bernd, H.; Danicke, V.; Keller, R.; Brinkmann, R. CW high power IR-laser at 2 µm for minimally invasive surgery. In Therapeutic Laser Applications and Laser-Tissue Interactions; Steiner, R., Ed.; SPIE Optical Society of America: Washington, DC, USA, 2003; Volume 5142, p. 5142_96. [Google Scholar] [CrossRef]
- Polder, K.D.; Bruce, S. Treatment of Melasma Using a Novel 1,927-nm Fractional Thulium Fiber Laser: A Pilot Study. Dermatol. Surg. 2012, 38, 199–206. [Google Scholar] [CrossRef]
- Xie, X.; Xu, Q.; Hu, W.; Zhang, W.; Dai, Q.; Chen, J.; Deng, J.; Song, H.-Z.; Wang, S.-X. A Brief Review of 2 μm Laser Scalpel. In Proceedings of the 2020 IEEE 5th Optoelectronics Global Conference (OGC), Shenzhen, China, 7–11 September 2020; pp. 63–67. [Google Scholar] [CrossRef]
- Shen, W.; Du, J.; Sun, L.; Wang, C.; Zhu, Y.; Xu, K.; Chen, B.; He, Z. Low-Latency and High-Speed Hollow-Core Fiber Optical Interconnection at 2-Micron Waveband. J. Light. Technol. 2020, 38, 3874–3882. [Google Scholar] [CrossRef]
- Mingareev, I.; Weirauch, F.; Olowinsky, A.; Shah, L.; Kadwani, P.; Richardson, M. Welding of polymers using a 2μm thulium fiber laser. Opt. Laser Technol. 2012, 44, 2095–2099. [Google Scholar] [CrossRef]
- Wang, T.; Ma, W.; Jia, Q.; Su, Q.; Liu, P.; Zhang, P. Passively Mode-Locked Fiber Lasers Based on Nonlinearity at 2-μm Band. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–11. [Google Scholar] [CrossRef]
- Wu, Y.; Tian, J.-R.; Dong, Z.; Liang, C.; Song, Y.-R. Generation of Two Dissipative Soliton Resonance Pulses in an All-Anomalous-Dispersion Regime Thulium-Doped Fiber Laser. IEEE Photon- J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, T.; Li, M.; Zhang, B.; Lu, Y.; Chen, K.P. All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes. Appl. Phys. Lett. 2013, 103, 011103. [Google Scholar] [CrossRef]
- Zhao, J.; Li, L.; Zhao, L.; Tang, D.; Shen, D.; Su, L. Tunable and switchable harmonic h-shaped pulse generation in a 303 km ultralong mode-locked thulium-doped fiber laser. Photon- Res. 2019, 7, 332–340. [Google Scholar] [CrossRef]
- Zhao, J.; Ouyang, D.; Zheng, Z.; Liu, M.; Ren, X.; Li, C.; Ruan, S.; Xie, W. 100 W dissipative soliton resonances from a thulium-doped double-clad all-fiber-format MOPA system. Opt. Express 2016, 24, 2072–2081. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Escamilla, B.; Duran-Sanchez, M.; Posada-Ramirez, B.; Santiago-Hernandez, H.; Alvarez-Tamayo, R.I.; de la Llave, D.S.; Bello-Jimenez, M.; Kuzin, E.A. Dissipative Soliton Resonance in a Thulium-Doped All-Fiber Laser Operating at Large Anomalous Dispersion Regime. IEEE Photon- J. 2018, 10, 1503907. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Sun, Z.; Luo, H.; Liu, Y.; Yan, Z.; Mou, C.; Zhang, L.; Turitsyn, S. All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes. Opt. Express 2014, 22, 7875–7882. [Google Scholar] [CrossRef]
- Du, T.; Li, W.; Ruan, Q.; Wang, K.; Chen, N.; Luo, Z. 2 µm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser. Appl. Phys. Express 2018, 11, 052701. [Google Scholar] [CrossRef]
- Wang, H.W.H.; Du, T.D.T.; Li, Y.L.Y.; Zou, J.Z.J.; Wang, K.W.K.; Zheng, F.Z.F.; Fu, J.F.J.; Yang, J.Y.J.; Fu, H.F.H.; Luo, Z.L.Z. 2080 nm long-wavelength, high-power dissipative soliton resonance in a dumbbell-shaped thulium-doped fiber laser. Chin. Opt. Lett. 2019, 17, 030602. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.-L.; Cui, J.-H.; Huang, J.-J. Evolution of Soliton Rain in a Tm-doped Passive Mode-Locked All-Fiber Laser. IEEE Photon- J. 2020, 12, 1503408. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, Y.; Tang, Y.; Xu, J.; Hu, C.; Gao, L.; Zhang, H.; Wang, Q. Mode-locked Tm-doped fiber laser based on iron-doped carbon nitride nanosheets. Laser Phys. Lett. 2017, 14, 110002. [Google Scholar] [CrossRef]
- Wang, M.; Huang, Y.; Song, Z.; Wei, J.; Pei, J.; Ruan, S. Two-micron all-fiberized passively mode-locked fiber lasers with high-energy nanosecond pulse. High Power Laser Sci. Eng. 2020, 8, e14. [Google Scholar] [CrossRef]
- Wang, X.-F.; Peng, X.-L.; Jiang, Q.-X.; Gu, X.-H.; Zhang, J.-H.; Mao, X.-F.; Yuan, S.-Z. 2-μm mode-locked nanosecond fiber laser based on MoS2. Chin. Phys. B 2017, 26, 114205. [Google Scholar] [CrossRef]
- Wan, P.; Yang, L.-M.; Liu, J. High power 2 µm femtosecond fiber laser. Opt. Express 2013, 21, 21374–21379. [Google Scholar] [CrossRef]
- Wang, X.-F.; Jin, Z.-G.; Liu, J.-H. 2.04 µm harmonic noise-like pulses generation from a mode-locked fiber laser based on nonlinear polarization rotation. Optoelectron. Lett. 2021, 17, 18–21. [Google Scholar] [CrossRef]
- Cao, R.; Lu, Y.; Tian, Y.; Huang, F.; Xu, S.; Zhang, J. Spectroscopy of thulium and holmium co-doped silicate glasses. Opt. Mater. Express 2016, 6, 2252–2263. [Google Scholar] [CrossRef]
- Khamis, M.A.; Ennser, K. Broadband amplified spontaneous emission thulium-doped fiber sources near 2 µm. In Horizons in World Physics 299; Reimer, A., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2019; Chapter 3. [Google Scholar]
- Hemming, A.; Simakov, N.; Haub, J.; Carter, A. A review of recent progress in holmium-doped silica fibre sources. Opt. Fiber Technol. 2014, 20, 621–630. [Google Scholar] [CrossRef]
- Quan, Z.; Gao, C.; Guo, H.; Wang, N.; Cui, X.; Xu, Y.; Peng, B.; Wei, W. 400 mW narrow-linewidth Tm-doped silica fiber laser output near 1750nm with volume Bragg grating. Sci. Rep. 2015, 5, 12034. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, J. A Passively Q-Switched Holmium-Doped Fiber Laser with Graphene Oxide at 2058 nm. Appl. Sci. 2021, 11, 407. [Google Scholar] [CrossRef]
- Jackson, S.; King, T. Theoretical modeling of Tm-doped silica fiber lasers. J. Light. Technol. 1999, 17, 948–956. [Google Scholar] [CrossRef]
- Cuadrado-Laborde, C.; Cruz, J.L.; Diez, A.; Andres, M.V. Passively Modelocked All-PM Thulium-Doped Fiber Laser at 2.07 μm. IEEE Photon- J. 2022, 14, 1539005. [Google Scholar] [CrossRef]
- Jackson, S. The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared. Laser Photon- Rev. 2009, 3, 466–482. [Google Scholar] [CrossRef]
- Available online: https://www.newport.com/t/high-speed-detectors (accessed on 1 October 2022).
- Sánchez, L.; Cuadrado-Laborde, C.; Carrascosa, A.; Díez, A.; Cruz, J.; Andrés, M. Low-repetition-rate all-polarization maintaining thulium-doped passively modelocked fiber laser. Opt. Laser Technol. 2022, 149, 107856. [Google Scholar] [CrossRef]
- Ahmad, H.; Samion, M.; Kamely, A.; Ismail, M. Mode-locked thulium doped fiber laser with zinc oxide saturable absorber for 2 μm operation. Infrared Phys. Technol. 2019, 97, 142–148. [Google Scholar] [CrossRef]
- Martínez, O.E.; Fork, R.L.; Gordon, J.P. Theory of passively mode-locked lasers including self-phase modulation and group-velocity dispersion. Opt. Lett. 1984, 9, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Haus, H. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1173–1185. [Google Scholar] [CrossRef]
- Afkhamiardakani, H.; Tehrani, M.; Diels, J.-C. Extension of the stable operation of an all polarization maintaining mode-locked fiber laser. In Proceedings of the Conference on Lasers and Electro-Optics, OSA Technical Digest. Online, 13–18 May 2018; p. JTh2A.141. [Google Scholar]
- Zhang, Y.; Zheng, Y.; Su, X.; Peng, J.; Yu, H.; Sun, T.; Zhang, H. All-Polarization Maintaining Noise-Like Pulse From Mode-Locked Thulium-Doped Fiber Laser Based on Nonlinear Loop Mirror. IEEE Photon- J. 2022, 14, 1–5. [Google Scholar] [CrossRef]
- Shen, X.; Li, W.; Zeng, H. Polarized dissipative solitons in all-polarization-maintained fiber laser with long-term stable self-started mode-locking. Appl. Phys. Lett. 2014, 105, 101109. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, J.; Wang, Z.; Gu, X.; Feng, Y. SESAM Mode-Locked, Environmentally Stable, and Compact Dissipative Soliton Fiber Laser. IEEE Photon- Technol. Lett. 2014, 26, 1314–1316. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuadrado-Laborde, C.; Cruz, J.L.; Díez, A.; Andrés, M.V. Long- and Short-Term Stability of All Polarization-Maintaining Thulium Doped Passively Mode-Locked Fiber Lasers with Emission Wavelengths at 1.95 μm and 2.07 μm. Appl. Sci. 2023, 13, 1981. https://doi.org/10.3390/app13031981
Cuadrado-Laborde C, Cruz JL, Díez A, Andrés MV. Long- and Short-Term Stability of All Polarization-Maintaining Thulium Doped Passively Mode-Locked Fiber Lasers with Emission Wavelengths at 1.95 μm and 2.07 μm. Applied Sciences. 2023; 13(3):1981. https://doi.org/10.3390/app13031981
Chicago/Turabian StyleCuadrado-Laborde, Christian, Jose L. Cruz, Antonio Díez, and Miguel V. Andrés. 2023. "Long- and Short-Term Stability of All Polarization-Maintaining Thulium Doped Passively Mode-Locked Fiber Lasers with Emission Wavelengths at 1.95 μm and 2.07 μm" Applied Sciences 13, no. 3: 1981. https://doi.org/10.3390/app13031981
APA StyleCuadrado-Laborde, C., Cruz, J. L., Díez, A., & Andrés, M. V. (2023). Long- and Short-Term Stability of All Polarization-Maintaining Thulium Doped Passively Mode-Locked Fiber Lasers with Emission Wavelengths at 1.95 μm and 2.07 μm. Applied Sciences, 13(3), 1981. https://doi.org/10.3390/app13031981