Exploring Effective Bio-Cover Materials for Mitigating Methane Emission at a Tropical Landfill
Abstract
:1. Introduction
2. Methodology
2.1. Bio-Cover Unit Set-Up and Operation
2.2. Samplings and Analyses
2.3. Evaluation of Bio-Cover Performance
2.4. Methane Oxidation Capacities and Methanotroph Population
3. Results and Discussion
3.1. Environmental Conditions at the Site
3.2. Observed Methane Removals in Bio-Cover
3.3. Methane Oxidation Capacities of Bio-Cover Materials
3.4. Methanotroph Population and Microbial Consortium
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Urban Development Series; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Bogner, J.; Pipatti, R.; Hashimoto, S.; Diaz, C.; Mareckova, K.; Diaz, L.; Kjeldsen, P.; Monni, S.; Faaij, A.; Gao, Q.; et al. Mitigation of global greenhouse gas emissions from waste: Conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Manag. Res. 2008, 26, 11–32. [Google Scholar] [CrossRef] [PubMed]
- Gebert, J.; Huber-Huber, M.; Cabral, A.R. Design of microbial methane oxidation systems for landfills. Front. Environ. Sci. 2022, 10, 907562. [Google Scholar] [CrossRef]
- Duan, Z.; Scheutz, C.; Kjeldsen, P. Mitigation of methane emissions from three Danish landfills using different biocover systems. Waste Manag. 2022, 149, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Sadavivam, B.Y.; Reddy, K.R. Landfill methane oxidation in soil and bio-based cover systems: A review. Rev. Environ. Sci. Biotechnol. 2014, 13, 79–107. [Google Scholar] [CrossRef]
- Rose, J.L.; Mahler, C.F.; Izzo, R.L.S. Comparison of the methane oxidation rate in four media. Rev. Bras. Cienc. Solo 2012, 36, 803–812. [Google Scholar] [CrossRef]
- Huber-Humer, M.; Tintner, J.; Böhm, K.; Lechner, P. Scrutinizing compost properties and their impact on methane oxidation efficiency. Waste Manag. 2011, 31, 871–883. [Google Scholar] [CrossRef]
- Scheutz, C.; Kjeldsen, P.; Bogner, J.; De Visscher, A.; Gebert, J.; Hilger, H.A.; Huber-Humer, M.; Spokas, K. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 2009, 27, 409–455. [Google Scholar] [CrossRef]
- Cébron, A.; Bodrossy, L.; Chen, Y.; Singer, A.C.; Thompson, I.P.; Prosser, J.I.; Murrell, J.C. Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. FEMS Microbiol. Ecol. 2007, 62, 12–23. [Google Scholar] [CrossRef]
- Lizik, W.; Im, J.; Semrau, J.D.; Barcelona, M.J. A field trial of nutrient stimulation of methanotrophs to reduce greenhouse gas emissions from landfill cover soils. J. Air Waste Manag. Assoc. 2013, 63, 300–309. [Google Scholar] [CrossRef]
- Attalage, D.S.; Hettiaratchi, P.A.; Jayasinghe, P.; Dunfield, P.F.; Smirnova, A.V.; Rathnavibushana, U.K.; Erkmen, M.; Kumar, S. Field study on the effect of vegetation on the performance of soil methanotrophy-based engineered systems-column experiments. Soil Biol. Biochem. 2022, 167, 108583. [Google Scholar] [CrossRef]
- Zeiss, C.A. Accelerated methane oxidation cover system to reduce greenhouse gas emissions from MSW landfills in cold, semi-arid regions. Water Air Soil Pollut. 2006, 176, 285–306. [Google Scholar] [CrossRef]
- Tanthachoon, N.; Chiemchaisri, C.; Chiemchaisri, W.; Tudsri, S.; Kumar, S. Methane oxidation in compost-based landfill cover with vegetation during wet and dry conditions in the tropics. J. Air Waste Manag. Assoc. 2008, 58, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Chiemchaisri, C.; Chiemchaisri, W.; Chittanukul, K.; Soontornlerdwanich, W.; Tanthachoon, N. Effect of leachate irrigation on methane oxidation in tropical landfill cover soil. J. Mater. Cycles Waste Manag. 2010, 12, 161–168. [Google Scholar] [CrossRef]
- Abushammala, M.F.M.; Basri, N.E.A.; Elfithri, R. Assessment of methane emission and oxidation in Air Hitam landfill site cover soil in wet tropical climate. Environ. Monit. Assess. 2013, 185, 9967–9978. [Google Scholar] [CrossRef] [PubMed]
- Abushammala, M.F.M.; Basri, N.E.A.; Basri, H.; Kadhum, A.A.H.; El-Shafie, A.H. Empirical gas emission and oxidation measurement at cover soil of dumping site: Example from Malaysia. Environ. Monit. Assess. 2013, 185, 4919–4932. [Google Scholar] [CrossRef]
- Moreira, J.M.L.; Candiani, G. Assessment of methane generation, oxidation, and emission in a subtropical landfill test cell. Environ. Monit. Assess. 2016, 188, 464. [Google Scholar] [CrossRef]
- Abichou, T.; Mahieu, K.; Chanton, J.; Romdhane, M.; Mansouri, I. Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions. Waste Manag. 2011, 31, 978–986. [Google Scholar] [CrossRef]
- Tanthachoon, N.; Chiemchaisri, C.; Chiemchaisri, W. Utilisation of municipal solid waste compost as landfill cover soil for reducing greenhouse gas emission. Int. J. Environ. Technol. Manag. 2007, 7, 286–297. [Google Scholar] [CrossRef]
- Chiemchaisri, W.; Chiemchaisri, C.; Boonchaiyuttasak, J. Utilization of stabilized wastes for reducing methane emission from municipal solid waste disposal. Bioresour. Technol. 2013, 141, 199–204. [Google Scholar] [CrossRef]
- Anderson, J.; Ingram, J. Tropical Soil Biology and Fertility: A Handbook of Methods, 2nd ed.; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Chiemchaisri, C.; Chiemchaisri, W.; Sawat, A. Mitigation of methane emission from solid waste disposal site in the tropics by vegetated cover soil. Asian J. Water Environ. Pollut. 2006, 3, 29–33. [Google Scholar]
- Eller, G.; Stubner, S.; Frenzel, P. Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridization. FEMS Microbiol. Lett. 2001, 198, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Muenmee, S.; Chiemchaisri, W.; Chiemchaisri, C. Microbial consortium involving biological methane oxidation in relation to the biodegradation of plastic wastes in a solid waste disposal open dump site. Int. Biodeterior. Biodegrad. 2015, 102, 172–181. [Google Scholar] [CrossRef]
- Chiemchaisri, C.; Chiemchaisri, W.; Kumar, S.; Hettiaratchi, J.P.A. Solid waste characteristics and their relationship to gas production in tropical landfill. Environ. Monit. Assess. 2007, 135, 41–48. [Google Scholar] [CrossRef]
- Abichou, T.; Mahieu, K.; Yuan, L.; Chanton, J.; Hater, G. Effects of compost biocovers on gas flow and methane oxidation in a landfill cover. Waste Manag. 2009, 29, 1595–1601. [Google Scholar] [CrossRef] [PubMed]
- Berenjkar, P.; Sparling, R.; Lozecznik, S.; Yuan, Q. Methane oxidation in a landfill biowindow under wide seasonally fluctuating climatic conditions. Environ. Sci. Pollut. Res. 2022, 29, 24623–24638. [Google Scholar] [CrossRef]
- Fjelsted, L.; Scheutz, C.; Christensen, A.G.; Larsen, J.E.; Kjeldsen, P. Biofiltration of diluted landfill gas in an active loaded open- bed compost filter. Waste Manag. 2020, 103, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chi, Z.; Lu, W.; Mou, Z.; Wang, H.; Long, Y.; Duan, Z. Effect of biocover equipped with a novel passive air diffusion system on microbial methane oxidation and community of methanotrophs. J. Air Waste Manag. Assoc. 2012, 62, 278–286. [Google Scholar] [CrossRef]
Parameter | Sandy Loam (SL) | Compost (C) | Stabilized Wastes (SW) |
---|---|---|---|
Bulk density (kg/m3) | 1178 | 595 | 189 |
Porosity (%) | 55.5 | 71.4 | 75.5 |
pH | 7.27 | 7.12 | 6.8 |
EC (µs/cm) | 1766 | 1206 | 285 |
TOC (%) | 0.6 | 30 | 71.1 |
NH4+-N (mg/kg) | 1.38 | 4.74 | 0.6 |
NO3−-N (mg/kg) | 16.4 | 5.5 | 57.9 |
TN (g/kg) | 1.08 | 0.18 | 0.15 |
TP (g/kg) | 0.43 | 1.08 | 0.61 |
Parameters | Range | Average |
---|---|---|
pH | 8.6–8.9 | 8.76 |
EC (µs/cm) | 256–262 | 259 |
BOD (mg/L) | 100–200 | 150 |
COD (mg/L) | 1300–2000 | 1725 |
TKN (mg/L) | 50.4–70 | 68 |
NH4+ (mg N/L) | 2.24–5.6 | 4.5 |
NO2− (mg N/L) | 1.615–1.664 | 1.639 |
NO3− (mg N/L) | 44.64–52.63 | 46.47 |
PO43− (mg P/L) | 0.249–0.818 | 0.418 |
Period | Media Depth (m from Top) | MLR (mol/m3/d) | MRR (mol/m3/d) | ||||
---|---|---|---|---|---|---|---|
SL | C | SW | SL | C | SW | ||
0–0.20 | 0.4 ± 0.1 | 0.4 ± 0.2 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.3 ± 0.2 | 0.2 ± 0.1 | |
Wet | 0.20–0.40 | 0.6 ± 0.2 | 2.2 ± 0.7 | 1.7 ± 0.6 | 0.2 ± 0.1 | 1.8 ± 0.5 | 1.6 ± 0.6 |
0.40–0.60 | 11.5 ± 1.7 | 10.5 ± 0.9 | 8.2 ± 1.4 | 10.9 ± 1.5 | 8.3 ± 0.8 | 6.4 ± 1.2 | |
0–0.20 | 1.5 ± 0.1 | 1.4 ± 0.2 | 0.9 ± 0.1 | 1.0 ± 0.1 | 1.0 ± 0.2 | 0.6 ± 0.1 | |
Dry | 0.20–0.40 | 8.9 ± 0.6 | 5.2 ± 0.7 | 5.8 ± 0.2 | 7.4 ± 0.5 | 3.9 ± 0.6 | 4.9 ± 0.2 |
0.40–0.60 | 20.3 ± 0.9 | 15.3 ± 1.2 | 13.7 ± 0.4 | 11.4 ± 0.8 | 10.1 ± 0.9 | 7.8 ± 0.5 |
Media | Depth (m) | MOR (µmol/g Dry Solids/h) | CPR (µmol/g Dry Solids/h) | MOR:CPR |
---|---|---|---|---|
SL | 0–0.20 | 1.31 | 0.74 | 1.77 |
0.20–0.40 | 0.50 | 1.03 | 0.48 | |
0.40–0.60 | 0.60 | 1.32 | 0.45 | |
C | 0–0.20 | 2.49 | 2.1 | 1.19 |
0.20–0.40 | 2.08 | 2.4 | 0.87 | |
0.40–0.60 | 2.03 | 2.5 | 0.81 | |
SW | 0–0.20 | 0.13 | 0.44 | 0.3 |
0.20–0.40 | 0.12 | 0.17 | 0.69 | |
0.40–0.60 | 0.20 | 0.27 | 0.74 |
Period | Media Depth (m) | Number of Methanotrophic Cells (Cell × 106/g Dry Solids) | |||||
---|---|---|---|---|---|---|---|
Type I | Type II | ||||||
SL | C | SW | SL | C | SW | ||
0–0.20 | 10.2 | 30.3 | 8.4 | 27.2 | 35.5 | 9.3 | |
Wet | 0.20–0.40 | 10.1 | 9.33 | 10.4 | 28.5 | 32.8 | 9.6 |
0.40–0.60 | 11.1 | 11.1 | 10.7 | 30.1 | 26.7 | 10.9 | |
0–0.20 | 36.1 | 24.2 | 13.3 | 16.9 | 19.9 | 9.7 | |
Dry | 0.20–0.40 | 35.5 | 28.7 | 13.8 | 17.2 | 24.9 | 14.7 |
0.40–0.60 | 34.6 | 24.9 | 19.6 | 25.1 | 23.6 | 16.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, R.; Chiemchaisri, W.; Chiemchaisri, C. Exploring Effective Bio-Cover Materials for Mitigating Methane Emission at a Tropical Landfill. Appl. Sci. 2023, 13, 1990. https://doi.org/10.3390/app13031990
Chan R, Chiemchaisri W, Chiemchaisri C. Exploring Effective Bio-Cover Materials for Mitigating Methane Emission at a Tropical Landfill. Applied Sciences. 2023; 13(3):1990. https://doi.org/10.3390/app13031990
Chicago/Turabian StyleChan, Rathborey, Wilai Chiemchaisri, and Chart Chiemchaisri. 2023. "Exploring Effective Bio-Cover Materials for Mitigating Methane Emission at a Tropical Landfill" Applied Sciences 13, no. 3: 1990. https://doi.org/10.3390/app13031990
APA StyleChan, R., Chiemchaisri, W., & Chiemchaisri, C. (2023). Exploring Effective Bio-Cover Materials for Mitigating Methane Emission at a Tropical Landfill. Applied Sciences, 13(3), 1990. https://doi.org/10.3390/app13031990