Selecting Features That Influence Vehicle Collisions in the Internet of Vehicles Based on a Multi-Objective Hybrid Bi-Directional NSGA-III
Abstract
:1. Introduction
- A hybrid NSGA III Bi-directional gain ratio is proposed that combines wrapper and filter methods for selecting vehicle collision subset features in the IoV.
- The study reveals the optimal subset features required for vehicle collision detection in the Internet of Vehicles.
- The evaluation study shows that the performance of the hybrid, bi-directional NSGA III is better than the other compared algorithms.
- IoV vehicle collision detection features are reduced to the minimal amount and the accuracy of collision detection in the IoV is maximized.
- It is possible to develop a vehicle collision alert system for collision detection of vehicles in the IoV using only three subset features.
- The proposed algorithm has the potential to be used to develop vehicle collision alarm systems with an improved performance that can assist drivers/self-driving cars to avoid vehicle collision faster and better.
2. Features Influencing Vehicle Collision in Internet of Vehicles
3. Feature Selection Algorithms
3.1. Basic Operations of the Feature Selection Algorithms
3.2. Multi-Objective NSGA3 and NSGA2
3.3. Gain Ratio, Filter and Wrapper
4. Methodology
4.1. Dataset Description
4.2. Proposed Multi-Objective Hybrid NSGA3
5. Results and Discussion
5.1. Computational Time Complexity
5.2. Performance Comparison with Other Classes of Feature Selection Algorithms
5.3. Implication of the Study to Theory and Practice
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiroma, H.; Abdulhamid SI, M.; Hashem, I.A.; Adewole, K.S.; Ezugwu, A.E.; Abubakar, S.; Shuib, L. Deep learning-based big data analytics for internet of vehicles: Taxonomy, challenges, and research directions. Math. Probl. Eng. 2021, 2021, 9022558. [Google Scholar] [CrossRef]
- Liu, N. Internet of vehicles: Your next connection. Huawei WinWin 2011, 11, 23–28. Available online: http://www.binarytek.cn/page104?_l=en&article_id=145&brd=1 (accessed on 15 November 2022).
- Agrawal, P.; Abutarboush, H.F.; Ganesh, T.; Mohamed, A.W. Metaheuristic algorithms on feature selection: A survey of one decade of research (2009–2019). IEEE Access 2021, 9, 26766–26791. [Google Scholar] [CrossRef]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In Proceedings of the 2014 Science and Information Conference, London, UK, 27–29 August 2014; pp. 372–378. [Google Scholar]
- Tang, J.; Alelyani, S.; Liu, H. Feature selection for classification: A review. In Data Classification: Algorithms and Applications; CRC Press: Boca Raton, FL, USA, 2014; pp. 37–64. [Google Scholar]
- 7Brik, B.; Ksentini, A. Toward optimal MEC resource dimensioning for a vehicle collision avoidance system: A deep learning approach. IEEE Netw. 2021, 35, 74–80. [Google Scholar]
- Chang, C.C.; Ooi, Y.M.; Sieh, B.H. IoV-based collision avoidance architecture using machine learning prediction. IEEE Access 2021, 9, 115497–115505. [Google Scholar] [CrossRef]
- Chang, W.J.; Chen, L.B.; Su, K.Y. DeepCrash: A deep learning-based Internet of vehicles system for head-on and single-vehicle accident detection with emergency notification. IEEE Access 2019, 7, 148163–148175. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Qiu, T.; Mu, C.; Chen, C.; Zhou, P. A real-time collision prediction mechanism with deep learning for intelligent transportation system. IEEE Trans. Veh. Technol. 2020, 69, 9497–9508. [Google Scholar] [CrossRef]
- Chen, L.B.; Su, K.Y.; Mo, Y.C.; Chang, W.J.; Hu, W.W.; Tang, J.J.; Yu, C.T. An implementation of deep learning based IoV system for traffic accident collisions detection with an emergency alert mechanism. In Proceedings of the 2018 IEEE 8th International Conference on Consumer Electronics-Berlin (ICCE-Berlin), Berlin, Germany, 2–5 September 2018; pp. 1–2. [Google Scholar]
- Almutairi, M.S.; Almutairi, K.; Chiroma, H. Hybrid of Deep Recurrent Network and Long Short Term Memory for Rear-end Collision Detection in Fog based Internet of Vehicles. Expert Syst. Appl. 2023, 213, 119033. [Google Scholar] [CrossRef]
- Chen, C.; Xiang, H.; Qiu, T.; Wang, C.; Zhou, Y.; Chang, V. A rear-end collision prediction scheme based on deep learning in the Internet of Vehicles. J. Parallel Distrib. Comput. 2018, 117, 192–204. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, J.; Chen, J.; Ming, Z. An improved NSGA-III algorithm for feature selection used in intrusion detection. Knowl.-Based Syst. 2017, 116, 74–85. [Google Scholar] [CrossRef]
- University of Pritoria. Feature selection problems. Chapter 3. Ph.D. Thesis, University of Pritoria, Pretoria, South Africa, 2011. Available online: https://repository.up.ac.za/bitstream/handle/2263/29486/02chapter3-.pdf?sequence=3&isAllowed=y (accessed on 21 December 2022).
- Xue, Y.; Tang, Y.; Xu, X.; Liang, J.; Neri, F. Multi-objective feature selection with missing data in classification. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 6, 355–364. [Google Scholar] [CrossRef]
- Contreras-Castillo, J.; Zeadally, S.; Guerrero-Ibañez, J.A. Internet of vehicles: Architecture, protocols, and security. IEEE Internet Things J. 2017, 5, 3701–3709. [Google Scholar] [CrossRef]
- Kaiwartya, O.; Abdullah, A.H.; Cao, Y.; Altameem, A.; Prasad, M.; Lin, C.T.; Liu, X. Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects. IEEE Access 2016, 4, 5356–5373. [Google Scholar] [CrossRef]
- Yang, F.; Wang, S.; Li, J.; Liu, Z.; Sun, Q. An overview of internet of vehicles. China Commun. 2014, 11, 1–15. [Google Scholar] [CrossRef]
- Niu, Z.; Shen, S.; Zhang, Q.Y. Space-air-ground integrated vehicular network for immersive driving experience. Chin. J. IoT 2017, 2, 17–27. [Google Scholar]
- Ji, B.; Zhang, X.; Mumtaz, S.; Han, C.; Li, C.; Wen, H.; Wang, D. Survey on the internet of vehicles: Network architectures and applications. IEEE Commun. Stand. Mag. 2020, 4, 34–41. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Lin, Z.; An, K.; Niu, H.; Hu, Y.; Chatzinotas, S.; Zheng, G.; Wang, J. SLNR-based secure energy efficient beamforming in multibeam satellite systems. IEEE Trans. Aerosp. Electron. Syst. Early Access. 2022. [Google Scholar] [CrossRef]
- An, K.; Lin, M.; Ouyang, J.; Zhu, W.P. Secure transmission in cognitive satellite terrestrial networks. IEEE J. Sel. Areas Commun. 2016, 34, 3025–3037. [Google Scholar] [CrossRef]
- An, K.; Liang, T.; Zheng, G.; Yan, X.; Li, Y.; Chatzinotas, S. Performance limits of cognitive-uplink FSS and terrestrial FS for Ka-band. IEEE Trans. Aerosp. Electron. Syst. 2018, 55, 2604–2611. [Google Scholar] [CrossRef]
- Zongker, D.; Jain, A. Algorithms for feature selection: An evaluation. In Proceedings of the 13th International Conference on Pattern Recognition, Vienna, Austria, 25–29 August 1996; Volume 2, pp. 18–22. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Ishibuchi, H.; Imada, R.; Setoguchi, Y.; Nojima, Y. Performance comparison of NSGA-II and NSGA-III on various many-objective test problems. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 3045–3052. [Google Scholar]
- Dai, J.; Xu, Q. Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification. Appl. Soft Comput. 2013, 13, 211–221. [Google Scholar] [CrossRef]
- Mkaouer, W.; Kessentini, M.; Shaout, A.; Koligheu, P.; Bechikh, S.; Deb, K.; Ouni, A. Many-objective software remodularization using NSGA-III. ACM Trans. Softw. Eng. Methodol. (TOSEM) 2015, 24, 1–45. [Google Scholar] [CrossRef]
- Usman, A.M.; Yusof, U.K.; Naim, S. Filter-based feature selection: A comparison among binary and continuous Cuckoo optimization algorithms along with multi-objective optimization algorithms using gain ratio-based entropy. Int. J. Bioinspired Comput. 2022, 20, 183–192. [Google Scholar] [CrossRef]
- Kumar, H.; Yadav, S.P. Using reference point-based NSGA-II to system reliability. Constraints 2017, 1, 2. [Google Scholar] [CrossRef]
- PyGMO: A Python Parallel Global Multiobjective Optimizer a Scientific Library That Provides a Large Number of Optimisation Problems and Algorithms Settings Library. Available online: https://esa.github.io/pygmo/index.html (accessed on 20 December 2022).
- Corne, D.W.; Jerram, N.R.; Knowles, J.D.; Oates, M.J. PESA-II: Region-based selection in evolutionary multiobjective optimization. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, San Francisco, CA, USA, 7–11 July 2001; pp. 283–290. [Google Scholar]
- Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-Report 2001, 103. [Google Scholar] [CrossRef]
- Erickson, M.; Mayer, A.; Horn, J. Multi-objective optimal design of groundwater remediation systems: Application of the niched Pareto genetic algorithm (NPGA). Adv. Water Resour. 2002, 25, 51–65. [Google Scholar] [CrossRef]
- Murata, T.; Ishibuchi, H. MOGA: Multi-objective genetic algorithms. In IEEE International Conference on Evolutionary Computation; IEEE: Piscataway, NJ, USA, 1995; Volume 1, pp. 289–294. [Google Scholar]
Parameter Description | Settings |
---|---|
Reference points number | 0.9 |
Crossover probability | 0.9 |
Crossover distribution index | 0.25 |
Mutation probability | 0.2 |
Hypervolume | [0, 0]–[1, 1] |
Generations | 500 |
Population size | 200 |
Population initialization | Random |
Objectives | 2 |
Method | SVM | KNN | GNB | RFC | DTC | |||||
---|---|---|---|---|---|---|---|---|---|---|
Selected Features | Accuracy | Selected Features | Accuracy | Selected Features | Accuracy | Selected Features | Accuracy | Selected Features | Accuracy | |
NSGA2 + GR | All features (6) | 75.11 | All features | 81.24 | All features | 74.55 | All features | 80.5 | All features | 79.5 |
F1 (3) | 88.22 | F3 (4) | 88.00 | F1 (3) | 88.51 | F4 (4) | 81.00 | F3 (4) | 81.5 | |
NSGA3 + GR | All features (6) | 89.64 | All features (6) | 84.92 | All features (6) | 85.00 | All features | 90.25 | All features | 89.0 |
F1 (3) | 98.22 | F3 (4) | 90.34 | F4 (4) | 91.28 | F3 (4) | 92.75 | F5 (5) | 90.5 | |
NSGA2 + Bi-directional | All features (6) | 90.2 | All features | 89.75 | All features | 89.55 | All features | 85.65 | All features | 82.50 |
F1 (3) | 91.44 | F2: (3) | 90.00 | F1 (3) | 90.00 | F1 (3) | 89.00 | F6 (2) | 89.50 | |
NSGA3 + Bi-directional | All features (6) | 93.25 | All features (6) | 91.05 | All features (6) | 91.75 | All features | 92.25 | All features | 90.65 |
F1 (3) | 98.97 | F3 (4) | 91.59 | F1 (3) | 92.25 | F2 (3) | 93.55 | F2 (3) | 91.30 | |
NSGA2 + Bi-directional + GR | All features (6) | 92.55 | All features | 90.75 | All features | 91.05 | All features | 89.12 | All features | 89.77 |
F1 (3) | 93.00 | F3 (4) | 91.75 | F1 (3) | 91.75 | F1 (3) | 90.05 | F3 (4) | 90.50 | |
NSGA3 + Bi-directional + GR | All features (6) | 99.25 | All features (6) | 92.05 | All features (6) | 93.15 | All features | 94.25 | All features | 90.65 |
F1 (3) | 99.97 | F2: (3) | 92.24 | F1 (3) | 93.30 | F2 (3) | 94.58 | F2 (3) | 92.32 |
Feature Selection Method | Computational Time (s) | Average Time | |||||
---|---|---|---|---|---|---|---|
SVM | KNN | GNB | RFC | DTC | |||
Filter | NSGA2 + GR | 0.742 | 0.891 | 0.811 | 0.742 | 0.749 | 0.787 |
NSGA3 + GR | 0.681 | 0.723 | 0.743 | 0.681 | 0.749 | 0.715 | |
Wrapper | NSGA2 + Bi-directional | 0.779 | 0.936 | 0.852 | 0.779 | 0.786 | 0.826 |
NSGA3 + Bi-directional | 0.712 | 0.756 | 0.776 | 0.712 | 0.783 | 0.748 | |
Hybrid | NSGA2 + Bi-directional + GR | 0.712 | 0.807 | 0.777 | 0.712 | 0.749 | 0.751 |
NSGA3 + Bi-directional + GR | 0.696 | 0.739 | 0.76 | 0.696 | 0.766 | 0.731 | |
Average time | 0.72 | 0.809 | 0.786 | 0.72 | 0.764 |
Algorithm | Accuracy | Time (s) |
---|---|---|
Pareto envelope-based selection algorithm II | 77.65 | 3.2010 |
Multi-objective evolutionary algorithm based on decomposition | 89.65 | 1.2350 |
Strength Pareto evolutionary algorithm 2 | 82.62 | 1.8650 |
Niched Pareto genetic algorithm | 78.66 | 2.7850 |
Multi-objective genetic algorithm | 89.11 | 1.9870 |
Hybrid NSGA3 + GR + Bi-directional | 99.97 | 0.6963 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, M.S.; Almutairi, K.; Chiroma, H. Selecting Features That Influence Vehicle Collisions in the Internet of Vehicles Based on a Multi-Objective Hybrid Bi-Directional NSGA-III. Appl. Sci. 2023, 13, 2064. https://doi.org/10.3390/app13042064
Almutairi MS, Almutairi K, Chiroma H. Selecting Features That Influence Vehicle Collisions in the Internet of Vehicles Based on a Multi-Objective Hybrid Bi-Directional NSGA-III. Applied Sciences. 2023; 13(4):2064. https://doi.org/10.3390/app13042064
Chicago/Turabian StyleAlmutairi, Mubarak S., Khalid Almutairi, and Haruna Chiroma. 2023. "Selecting Features That Influence Vehicle Collisions in the Internet of Vehicles Based on a Multi-Objective Hybrid Bi-Directional NSGA-III" Applied Sciences 13, no. 4: 2064. https://doi.org/10.3390/app13042064
APA StyleAlmutairi, M. S., Almutairi, K., & Chiroma, H. (2023). Selecting Features That Influence Vehicle Collisions in the Internet of Vehicles Based on a Multi-Objective Hybrid Bi-Directional NSGA-III. Applied Sciences, 13(4), 2064. https://doi.org/10.3390/app13042064