A Modified Folin-Ciocalteu Assay for the Determination of Total Phenolics Content in Honey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Honey Samples and Preparation
2.3. Preparation of Reagents and Standards
2.4. Folin-Ciocalteu Assays
2.4.1. Effect of pH
2.4.2. Effect of Incubation Time
2.5. Validation of the Modified Folin-Ciocalteu Assay Suited to Honey Analysis
2.5.1. Specificity
2.5.2. Linearity and Range
2.5.3. Limit of Detection (LOD) and Limit of Quantification (LOQ)
2.5.4. Accuracy
2.5.5. Precision
2.5.6. Robustness
2.6. Measurement of Total Phenolics Content of Honeys Using Different Folin-Ciocalteu Assays
2.7. Statistical Analysis
3. Results and Discussion
3.1. Modification of the Folin-Ciocalteu Assay Suited to Honey Analysis
3.1.1. pH Effect
3.1.2. Effect of Incubation Time
3.2. Validation of the Modified Folin-Ciocalteu Assay Suited to Honey Analysis
3.2.1. Specificity
3.2.2. Range/Linearity
3.2.3. Limit of Detection (LOD) and Limit of Quantitation (LOQ)
3.2.4. Accuracy
3.2.5. Precision
3.2.6. Robustness
3.3. Honey Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, J.W. Honey. Adv. Food Res. 1978, 24, 287–374. [Google Scholar] [PubMed]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Ball, D.W. The Chemical Composition of Honey. J. Chem. Educ. 2007, 84, 1643. [Google Scholar] [CrossRef]
- Dai, Y.; Jin, R.; Verpoorte, R.; Lam, W.; Cheng, Y.C.; Xiao, Y.; Xu, J.; Zhang, L.; Qin, X.M.; Chen, S. Natural deep eutectic characteristics of honey improve the bioactivity and safety of traditional medicines. J. Ethnopharmacol. 2020, 250, 112460. [Google Scholar] [CrossRef] [PubMed]
- Jasicka-Misiak, I.; Gruyaert, S.; Poliwoda, A.; Kafarski, P. Chemical profiling of polyfloral belgian honey: Ellagic acid and pinocembrin as antioxidants and chemical markers. J. Chem. 2017, 2017, 5393158. [Google Scholar] [CrossRef]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. A comparative study on phenolic profile, vitamin C content and antioxidant activity of Italian honeys of different botanical origin. Int. J. Food Sci. Technol. 2013, 48, 1899–1908. [Google Scholar] [CrossRef]
- Khalil, M.I.; Alam, N.; Moniruzzaman, M.; Sulaiman, S.A.; Gan, S.H. Phenolic Acid Composition and Antioxidant Properties of Malaysian Honeys. J. Food Sci. 2011, 76, C921–C928. [Google Scholar] [CrossRef]
- Lawag, I.L.; Lim, L.-Y.; Joshi, R.; Hammer, K.A.; Locher, C. A Comprehensive Survey of Phenolic Constituents Reported in Monofloral Honeys around the Globe. Foods 2022, 11, 1152. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Ma, S.; Kim, C.; Neilson, A.P.; Griffin, L.E.; Peck, G.M.; O’Keefe, S.F.; Stewart, A.C. Comparison of Common Analytical Methods for the Quantification of Total Polyphenols and Flavanols in Fruit Juices and Ciders. J. Food Sci. 2019, 84, 2147–2158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Bernal, Ó.A.; Torres-Aguirre, G.A.; Núñez-Gastélum, J.A.; de la Rosa, L.A.; Rodrigo-García, J.; Ayala-Zavala, J.F.; Álvarez-Parrilla, E. Nuevo Acercamiento A la Interacción del Reactivo de Folin-Ciocalteu con Azúcares Durante la Cuantificación de Polifenoles Totales. TIP 2017, 20, 23–28. [Google Scholar] [CrossRef]
- Vinson, J.A.; Proch, J.; Bose, P. Determination of quantity and quality of polyphenol antioxidants in foods and beverages. Methods Enzymol. 2001, 335, 103–114. [Google Scholar]
- Vinson, J.A.; Proch, J.; Zubik, L. Phenol antioxidant quantity and quality in foods: Cocoa, dark chocolate, and milk chocolate. J. Agric. Food Chem. 1999, 47, 4821–4824. [Google Scholar] [CrossRef] [PubMed]
- Pico, J.; Pismag, R.Y.; Laudouze, M.; Martinez, M.M. Systematic evaluation of the Folin-Ciocalteu and Fast Blue BB reactions during the analysis of total phenolics in legumes, nuts and plant seeds. Food Funct. 2020, 11, 9868–9880. [Google Scholar] [CrossRef]
- Bridi, R.; Troncoso, M.J.; Folch-Cano, C.; Fuentes, J.; Speisky, H.; López-Alarcón, C. A Polyvinylpolypyrrolidone (PVPP)-Assisted Folin–Ciocalteu Assay to Assess Total Phenol Content of Commercial Beverages. Food Anal. Methods 2014, 7, 2075–2083. [Google Scholar] [CrossRef]
- Magalhães, L.M.; Santos, F.; Segundo, M.A.; Reis, S.; Lima, J.L. Rapid microplate high-throughput methodology for assessment of Folin-Ciocalteu reducing capacity. Talanta 2010, 83, 441–447. [Google Scholar] [CrossRef]
- Beretta, G.; Orioli, M.; Facino, R.M. Antioxidant and radical scavenging activity of honey in endothelial cell cultures (EA.hy926). Planta Med. 2007, 73, 1182–1189. [Google Scholar] [CrossRef]
- Saric, G.; Markovic, K.; Major, N.; Krpan, M.; Ursulin-Trstenjak, N.; Hruskar, M.; Vahcic, N. Changes of antioxidant activity and phenolic content in acacia and multifloral honey during storage. Food Technol. Biotechnol. 2012, 50, 434–441. [Google Scholar]
- Nayaka, N.M.D.M.W.; Fidrianny, I.; Sukrasno; Hartati, R.; Singgih, M. Antioxidant and antibacterial activities of multiflora honey extracts from the Indonesian Apis cerana bee. J. Taibah Univ. Med. Sci. 2020, 15, 211–217. [Google Scholar] [CrossRef]
- Lawag, I.L.; Sostaric, T.; Lim, L.Y.; Hammer, K.; Locher, C. The Development and Application of a HPTLC-Derived Database for the Identification of Phenolics in Honey. Molecules 2022, 27, 6651. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant Activity, Total Phenolic Content, Individual Phenolics and Physicochemical Parameters Suitability for Romanian Honey Authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef]
- Albu, A.; Radu-Rusu, R.-M.; Simeanu, D.; Radu-Rusu, C.-G.; Pop, I.M. Phenolic and Total Flavonoid Contents and Physicochemical Traits of Romanian Monofloral Honeys. Agriculture 2022, 12, 1378. [Google Scholar] [CrossRef]
- Flanjak, I.; Kenjerić, D.; Bubalo, D.; Primorac, L. Characterisation of selected Croatian honey types based on the combination of antioxidant capacity, quality parameters, and chemometrics. Eur. Food Res. Technol. 2016, 242, 467–475. [Google Scholar] [CrossRef]
- Smetanska, I.; Alharthi, S.; Selim, K. Physicochemical, antioxidant capacity and color analysis of six honeys from different origin. J. King Saud Univ. Sci. 2021, 33, 101447. [Google Scholar] [CrossRef]
- Di Marco, G.; Gismondi, A.; Panzanella, L.; Canuti, L.; Impei, S.; Leonardi, D.; Canini, A. Botanical influence on phenolic profile and antioxidant level of Italian honeys. J. Food Sci. Technol. 2018, 55, 4042–4050. [Google Scholar] [CrossRef] [PubMed]
- Goslinski, M.; Nowak, D.; Szwengiel, A. Multidimensional Comparative Analysis of Bioactive Phenolic Compounds of Honeys of Various Origin. Antioxidants 2021, 10, 530. [Google Scholar] [CrossRef]
- Miłek, M.; Bocian, A.; Kleczyńska, E.; Sowa, P.; Dżugan, M. The Comparison of Physicochemical Parameters, Antioxidant Activity and Proteins for the Raw Local Polish Honeys and Imported Honey Blends. Molecules 2021, 26, 2423. [Google Scholar] [CrossRef]
- Tomczyk, M.; Tarapatskyy, M.; Dzugan, M. The influence of geographical origin on honey composition studied by Polish and Slovak honeys. Czech J. Food Sci. 2019, 37, 232–238. [Google Scholar] [CrossRef]
- Milosavljević, S.; Jadranin, M.; Mladenović, M.; Tešević, V.; Nebojsa, M.; Mutavdžić, D.; Krstic, G. Physicochemical Parameters as Indicators of The Authenticity of Monofloral Honey from the Territory of the Republic of Serbia. Maced. J. Chem. Chem. Eng. 2021, 40, 49. [Google Scholar] [CrossRef]
- Sakač, M.B.; Jovanov, P.T.; Marić, A.Z.; Pezo, L.L.; Kevrešan, Ž.S.; Novaković, A.R.; Nedeljković, N.M. Physicochemical properties and mineral content of honey samples from Vojvodina (Republic of Serbia). Food Chem. 2019, 276, 15–21. [Google Scholar] [CrossRef]
- Zivkovic, J.; Sunaric, S.; Stanković, N.; Mihajilov-Krstev, T.; Ana, S. Total Phenolic and Flavonoid Contents, Antioxidant and Antibacterial Activities of Selected Honeys Against Human Pathogenic Bacteria. Acta Pol. Pharm. 2019, 67, 671–681. [Google Scholar]
- Akgün, N.; Çelik, Ö.F.; Kelebekli, L. Physicochemical properties, total phenolic content, and antioxidant activity of chestnut, rhododendron, acacia and multifloral honey. J. Food Meas. Charact. 2021, 15, 3501–3508. [Google Scholar] [CrossRef]
- Boussaid, A.; Chouaibi, M.; Rezig, L.; Hellal, R.; Donsì, F.; Ferrari, G.; Hamdi, S. Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arab. J. Chem. 2018, 11, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Al-Farsi, M.; Al-Amri, A.; Al-Hadhrami, A.; Al-Belushi, S. Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon 2018, 4, e00874. [Google Scholar] [CrossRef]
- Pena Junior, D.S.; Almeida, C.A.; Santos, M.C.F.; Fonseca, P.H.V.; Menezes, E.V.; de Melo Junior, A.F.; Brandao, M.M.; de Oliveira, D.A.; Souza, L.F.; Silva, J.C.; et al. Antioxidant activities of some monofloral honey types produced across Minas Gerais (Brazil). PLoS ONE 2022, 17, e0262038. [Google Scholar] [CrossRef]
- Liben, T.; Atlabachew, M.; Abebe, A. Total phenolic, flavonoids and some selected metal content in honey and propolis samples from South Wolo zone, Amhara region, Ethiopia. Cogent Food Agric. 2018, 4, 1475925. [Google Scholar] [CrossRef]
- Wabaidur, S.M.; Ahmed, Y.B.H.; Alothman, Z.A.; Obbed, M.S.; Al-Harbi, N.M.; Al-Turki, T.M. Ultra high performance liquid chromatography with mass spectrometry method for the simultaneous determination of phenolic constituents in honey from various floral sources using multiwalled carbon nanotubes as extraction sorbents. J. Sep. Sci. 2015, 38, 2597–2606. [Google Scholar] [CrossRef]
- Shamsudin, S.; Selamat, J.; Abdul Shomad, M.; Ab Aziz, M.F.; Haque Akanda, M.J. Antioxidant Properties and Characterization of Heterotrigona itama Honey from Various Botanical Origins according to Their Polyphenol Compounds. J. Food Qual. 2022, 2022, 2893401. [Google Scholar] [CrossRef]
- Gorjanovic, S.Z.; Alvarez-Suarez, J.M.; Novakovic, M.M.; Pastor, F.T.; Pezo, L.; Battino, M.; Suznjevic, D.Z. Comparative analysis of antioxidant activity of honey of different floral sources using recently developed polarographic and various spectrophotometric assays. J. Food Compos. Anal. 2013, 30, 13–18. [Google Scholar] [CrossRef]
- Sahin, H.; Ozkok, A.; Tanugur Samanci, A.E.; Onder, E.Y.; Kolayli, S. Identification of the Main Phenolic Markers in Turkish Pine Honeys and Their Biological Functions. Chem. Biodivers. 2022, 19, e202200835. [Google Scholar] [CrossRef]
- Kolayli, S.; Kazaz, G.; Özkök, A.; Keskin, M.; Kara, Y.; Demir Kanbur, E.; Ertürk, Ö. The phenolic composition, aroma compounds, physicochemical and antimicrobial properties of Nigella sativa L. (black cumin) honey. Eur. Food Res. Technol. 2022, 1–12. [Google Scholar] [CrossRef]
- Hussein, S.Z.; Yusoff, K.M.; Makpol, S.; Mohd Yusof, Y.A. Antioxidant capacities and total phenolic contents increase with gamma irradiation in two types of Malaysian honey. Molecules 2011, 16, 6378–6395. [Google Scholar] [CrossRef] [PubMed]
- Vela, L.; de Lorenzo, C.; Pérez, R.A. Antioxidant capacity of Spanish honeys and its correlation with polyphenol content and other physicochemical properties. J. Sci. Food Agric. 2007, 87, 1069–1075. [Google Scholar] [CrossRef]
- Gül, A.; Pehlivan, T. Antioxidant activities of some monofloral honey types produced across Turkey. Saudi J. Biol. Sci. 2018, 25, 1056–1065. [Google Scholar] [CrossRef]
- Sousa, J.M.; de Souza, E.L.; Marques, G.; Meireles, B.; de Magalhães Cordeiro, Â.T.; Gullón, B.; Pintado, M.M.; Magnani, M. Polyphenolic profile and antioxidant and antibacterial activities of monofloral honeys produced by Meliponini in the Brazilian semiarid region. Food Res. Int. 2016, 84, 61–68. [Google Scholar] [CrossRef]
- Akalin, H.; Bayram, M.; Anli, R.E. Determination of some individual phenolic compounds and antioxidant capacity of mead produced from different types of honey. J. Inst. Brew. 2017, 123, 167–174. [Google Scholar] [CrossRef]
- Cheung, Y.; Meenu, M.; Yu, X.; Xu, B. Phenolic acids and flavonoids profiles of commercial honey from different floral sources and geographic sources. Int. J. Food Prop. 2019, 22, 290–308. [Google Scholar] [CrossRef]
- Lawag, I.L.; Yoo, O.; Lim, L.Y.; Hammer, K.; Locher, C. Optimisation of Bee Pollen Extraction to Maximise Extractable Antioxidant Constituents. Antioxidants 2021, 10, 1113. [Google Scholar] [CrossRef]
- Patel, N.G.; Patel, K.G.; Patel, K.V.; Gandhi, T.R. Validated HPTLC Method for Quantification of Luteolin and Apigenin in Premna mucronata Roxb., Verbenaceae. Adv. Pharmacol. Sci. 2015, 2015, 682365. [Google Scholar]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Maffei Facino, R. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Carmona-Hernandez, J.C.; Taborda-Ocampo, G.; González-Correa, C.H. Folin-Ciocalteu Reaction Alternatives for Higher Polyphenol Quantitation in Colombian Passion Fruits. Int. J. Food Sci. 2021, 2021, 8871301. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.K.; Lawag, I.L.; Green, K.J.; Sostaric, T.; Hammer, K.A.; Lim, L.Y.; Locher, C. An investigation of the suitability of melissopalynology to authenticate Jarrah honey. Curr. Res. Food Sci. 2022, 5, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Aljohar, H.I.; Maher, H.M.; Albaqami, J.; Al-Mehaizie, M.; Orfali, R.; Orfali, R.; Alrubia, S. Physical and chemical screening of honey samples available in the Saudi market: An important aspect in the authentication process and quality assessment. Saudi Pharm. J. 2018, 26, 932–942. [Google Scholar] [CrossRef]
- Sajwani, A.M.; Eltayeb, E.A.; Farook, S.A.; Patzelt, A. Sugar and Protein Profiles of Omani Honey from Muscat and Batinah Regions of Oman. Int. J. Food Prop. 2007, 10, 675–690. [Google Scholar] [CrossRef]
- Nayik, G.A.; Dar, B.N.; Nanda, V. Physico-chemical, rheological and sugar profile of different unifloral honeys from Kashmir valley of India. Arab. J. Chem. 2015, 12, 3151–3162. [Google Scholar] [CrossRef]
- Val, A.; Huidobro, J.F.; Sánchez, M.P.; Muniategui, S.; Fernández-Muiño, M.A.; Sancho, M.T. Enzymatic Determination of Galactose and Lactose in Honey. J. Agric. Food Chem. 1998, 46, 1381–1385. [Google Scholar] [CrossRef]
- Bastola, K.; Guragain, Y.; Bhadriraju, V.; Vadlani, V. Evaluation of Standards and Interfering Compounds in the Determination of Phenolics by Folin-Ciocalteu Assay Method for Effective Bioprocessing of Biomass. Am. J. Anal. Chem. 2017, 8, 416–431. [Google Scholar] [CrossRef]
- Lawag, I.L.; Islam, M.K.; Sostaric, T.; Lim, L.Y.; Hammer, K.; Locher, C. Antioxidant Activity and Phenolic Compound Identification and Quantification in Western Australian Honeys. Antioxidants 2023, 12, 189. [Google Scholar] [CrossRef]
- Green, K.J.; Lawag, I.L.; Locher, C.; Hammer, K.A. Correlation of the antibacterial activity of commercial manuka and Leptospermum honeys from Australia and New Zealand with methylglyoxal content and other physicochemical characteristics. PLoS ONE 2022, 17, e0272376. [Google Scholar] [CrossRef]
- Green, K.J.; Islam, M.K.; Lawag, I.; Locher, C.; Hammer, K.A. Honeys derived from plants of the coastal sandplains of Western Australia: Antibacterial and antioxidant activity, and other characteristics. J. Apic. Res. 2022, 1–14. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Eisner, P. How Does the Phenol Structure Influence the Results of the Folin-Ciocalteu Assay? Antioxidants 2021, 10, 811. [Google Scholar] [CrossRef] [PubMed]
Honey Name | Botanical Source | Supplier | Date |
---|---|---|---|
Jarrah | Eucalyptus marginata | Bramwells, Western Australia | 16 July |
Manuka | Leptospermum sp. | Barnes Naturals, Victoria | 17 January |
MIX | multifloral | Wescobee, Western Australia | 19 June |
TAB | multifloral | Aldi Supermarket, Western Australia | not indicated |
Section in the Paper | Analysis | Parameters | pH | Na2CO3 Conc. (%) | Condition | Sample | Sample Conc. | Blanking Solution | Gallic Acid Standard Curve (µg/mL) | Inc. Time (h) |
---|---|---|---|---|---|---|---|---|---|---|
Section 2.4.1, Section 3.1.1 | optimisation | pH | 1.8 | 0.00 | untreated (without AH) | gallic acid | 20, 40 µg/mL | water | 10, 20, 30, 40, 50, 60, 80, 100 | 2 |
Section 2.4.1, Section 3.1.1 | optimisation | pH | 1.8 | 0.00 | spiked with AH | gallic acid | 20, 40 µg/mL | artificial honey | 10, 20, 30, 40, 50, 60, 80, 100 | 2 |
Section 2.4.1, Section 3.1.1 | optimisation | pH | 7.9 | 0.75 | untreated (without AH) | gallic acid | 20, 40 µg/mL | water | 10, 20, 30, 40, 50, 60, 80, 100 | 2 |
Section 2.4.1, Section 3.1.1 | optimisation | pH | 7.9 | 0.75 | spiked with AH | gallic acid | 20, 40 µg/mL | artificial honey | 10, 20, 30, 40, 50, 60, 80, 100 | 2 |
Section 2.4.1, Section 3.1.1 | optimisation | pH | 8.4 | 0.94 | untreated (without AH) | gallic acid | 20, 40 µg/mL | water | 10, 20, 30, 40, 50, 60, 80, 100 | 2 |
Section 2.4.1, Section 3.1.1 | optimisation | pH | 8.4 | 0.94 | spiked w/AH | gallic acid | 20, 40 µg/mL | artificial honey | 10, 20, 30, 40, 50, 60, 80, 100 | 2 |
Section 2.4.1, Section 3.1.1 | optimisation | pH | 10.8 | 7.50 | untreated (w/o AH) | gallic acid | 20, 40 µg/mL | water | 10, 20, 30, 40, 50, 60, 80, 100 | 2 |
Section 2.4.1, Section 3.1.1 | optimisation | pH | 10.8 | 7.50 | spiked w/AH | gallic acid | 20, 40 µg/mL | artificial honey | 10, 20, 30, 40, 50, 60, 80, 100 | 2 |
Section 2.4.2, Section 3.1.2 | optimisation | incubation time | 7.9 | 0.75 | spiked w/AH | gallic acid | 30, 40, 50, 60, 70, 80, 90 µg/mL | artificial honey | 30, 40, 50, 60, 70, 80, 90 | 2 |
Section 2.4.2, Section 3.1.2 | optimisation | incubation time | 7.9 | 0.75 | spiked w/AH | gallic acid | 30, 40, 50, 60, 70, 80, 90 µg/mL | artificial honey | 30, 40, 50, 60, 70, 80, 90 | 3 |
Section 2.5.1, Section 3.2.1 | validation | specificity | 7.9 | 0.75 | spiked w/AH | AH & Sugars | 0.2 g/mL | artificial honey | 3, 4, 5, 6, 7, 8, 9 | 2 |
Section 2.5.2, Section 3.2.2 | validation | linearity | 7.9 | 0.75 | spiked w/AH | gallic acid | 3–100 µg/mL | artificial honey | N.A | 2 |
Section 2.5.2, Section 3.2.2 | validation | range | 7.9 | 0.75 | spiked w/AH | gallic acid | 3–100 µg/mL | artificial honey | N.A | 2 |
Section 2.5.3, Section 3.2.3 | validation | LOD & LOQ | 7.9 | 0.75 | spiked w/AH | gallic acid | 3, 4, 5, 6, 7, 8, 9 µg/mL | artificial honey | 3, 4, 5, 6, 7, 8, 9 | 2 |
Section 2.5.4, Section 3.2.4 | validation | accuracy | 7.9 | 0.75 | spiked w/AH | gallic acid | 14.4, 18.0, 21.6 µg/mL | artificial honey | 3, 4, 5, 6, 7, 8, 9 | 2 |
Section 2.5.5, Section 3.2.4 | validation | precision | 7.9 | 0.75 | spiked w/AH | gallic acid | 6, 12, 18 µg/mL | artificial honey | 3, 4, 5, 6, 7, 8, 9 | 2 |
Section 2.5.6, Section 3.2.6 | validation | robustness | 7.9 | 0.75 | spiked w/AH | gallic acid | 3, 4, 5, 6, 7, 8, 9 µg/mL | artificial honey | 3, 4, 5, 6, 7, 8, 9 | 2 |
Section 2.5.6, Section 3.2.6 | validation | robustness | 7.9 | 0.75 | spiked w/AH | gallic acid | 3, 4, 5, 6, 7, 8, 9 µg/mL | artificial honey | 3, 4, 5, 6, 7, 8, 9 | 2.25 |
Section 2.5.6, Section 3.2.6 | validation | robustness | 7.9 | 0.75 | spiked w/AH | gallic acid | 3, 4, 5, 6, 7, 8, 9 µg/mL | artificial honey | 3, 4, 5, 6, 7, 8, 9 | 2.5 |
Section 2.6, Section 3.2.1 | confirmation | sugar matrix effect | 7.9 | 0.75 | spiked w/AH | AH & Sugars | 0.2 g/mL | artificial honey | 3, 4, 5, 6, 7, 8, 9 | 2 |
Section 2.6, Section 3.3 | application | modified method | 7.9 | 0.75 | spiked w/AH | honeys | 0.2 g/mL | artificial honey | 3, 4, 5, 6, 7, 8, 9 | 2 |
Section 2.6, Section 3.3 | application | acidic method | 1.8 | 0.00 | spiked w/AH | honeys | 0.2 g/mL | artificial honey | 3, 4, 5, 6, 7, 8, 9 | 2 |
Section 2.6, Section 3.3 | application | traditional method | 10.8 | 7.50 | spiked w/AH | honeys | 0.2 g/mL | artificial honey | 3, 4, 5, 6, 7, 8, 9 | 2 |
Sugar | Amount in Floral Honey (%) | TPC (mg GAE/100 g) | Remarks |
---|---|---|---|
Artificial honey | N.A. | 0.59 ± 0.02 | <LOQ |
Glucose | <30.00% [53] | Not detected | <LOD |
Fructose | <50.00% [53] | 2.23 ± 0.06 | <LOQ |
Sucrose | <5.00% [54] | 0.08 ± 0.03 | <LOQ |
Maltose | <2.00% [55] | Not detected | <LOD |
Xylose | <0.50% [56] | Not detected | <LOD |
Galactose | <0.01% [57] | 0.55 ± 0.07 | <LOQ |
Lactose | <0.01% [57] | Not detected | <LOD |
Maltodextrin | N.A. | 2.82 ± 0.16 | <LOQ |
Mannose | N.A. | Not detected | <LOD |
Standard | Concentration (µg/mL) | Intra-Day Precision CV (%) | Inter-Day Precision CV (%) | Accuracy Recovery (%) |
---|---|---|---|---|
Gallic acid | 50 | 0.53 | 0.48 | 99.5 |
Gallic acid | 70 | 0.63 | 0.70 | 99.1 |
Gallic acid | 80 | 0.51 | 0.53 | 100.2 |
Honey/Sugar Sample | TPC mg GAE/100 g Honey | % Difference pH 7.9 and 10.8 | ||
---|---|---|---|---|
pH 1.8 | pH 7.9 | pH 10.8 | ||
TAB | 10.61 ± 0.14 | 18.55 ± 0.08 | 23.12 ± 0.41 | 19.77 |
MIX | 19.86 ± 0.22 | 34.60 ± 0.27 | 53.08 ± 0.35 | 34.82 |
MAN | 24.64 ± 0.43 | 54.00 ± 1.44 | 84.9 ± 0.62 | 36.40 |
JAR | 28.56 ± 0.16 | 56.03 ± 0.57 | 79.51 ± 0.21 | 29.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawag, I.L.; Nolden, E.S.; Schaper, A.A.M.; Lim, L.Y.; Locher, C. A Modified Folin-Ciocalteu Assay for the Determination of Total Phenolics Content in Honey. Appl. Sci. 2023, 13, 2135. https://doi.org/10.3390/app13042135
Lawag IL, Nolden ES, Schaper AAM, Lim LY, Locher C. A Modified Folin-Ciocalteu Assay for the Determination of Total Phenolics Content in Honey. Applied Sciences. 2023; 13(4):2135. https://doi.org/10.3390/app13042135
Chicago/Turabian StyleLawag, Ivan Lozada, Elisa S. Nolden, Arthur A. M. Schaper, Lee Yong Lim, and Cornelia Locher. 2023. "A Modified Folin-Ciocalteu Assay for the Determination of Total Phenolics Content in Honey" Applied Sciences 13, no. 4: 2135. https://doi.org/10.3390/app13042135
APA StyleLawag, I. L., Nolden, E. S., Schaper, A. A. M., Lim, L. Y., & Locher, C. (2023). A Modified Folin-Ciocalteu Assay for the Determination of Total Phenolics Content in Honey. Applied Sciences, 13(4), 2135. https://doi.org/10.3390/app13042135