Dunaliella viridis TAV01: A Halotolerant, Protein-Rich Microalga from the Algarve Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Cultivation Conditions
2.2. Identification
2.3. Proximate Composition
2.4. Fatty Acids Profile
2.5. Amino Acid Profile
2.6. Mineral Content
2.7. Carotenoid Content
2.8. Statistical Analysis
3. Results and Discussion
3.1. Identification
3.2. Proximate Composition
3.3. Fatty Acids Profile
3.4. Amino Acid Profile
3.5. Mineral Profile
3.6. Carotenoid Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Özçimen, D.; İnan, B.; Koçer, A.T.; Vehapi, M. Bioeconomic Assessment of Microalgal Production. In Microalgal Biotechnology; Jacob-Lopes, E., Zepka, L.Q., Queiroz, M.I., Eds.; IntechOpen: London, UK, 2018; ISBN 978-1-78923-332-2. [Google Scholar]
- Pereira, H.; Gangadhar, K.N.; Schulze, P.S.C.; Santos, T.; de Sousa, C.B.; Schueler, L.M.; Custódio, L.; Malcata, F.X.; Gouveia, L.; Varela, J.C.S.; et al. Isolation of a euryhaline microalgal strain, Tetraselmis sp. CTP4, as a robust feedstock for biodiesel production. Sci. Rep. 2016, 6, 35663. [Google Scholar] [CrossRef] [PubMed]
- Tarhan, S.Z.; Koçer, A.T.; Özçimen, D.; Gökalp, I. Cultivation of green microalgae by recovering aqueous nutrients in hydrothermal carbonization process water of biomass wastes. J. Water Process. Eng. 2020, 40, 101783. [Google Scholar] [CrossRef]
- Mendes, M.C.; Navalho, S.; Ferreira, A.; Paulino, C.; Figueiredo, D.; Silva, D.; Gao, F.; Gama, F.; Bombo, G.; Jacinto, R.; et al. Algae as Food in Europe: An Overview of Species Diversity and Their Application. Foods 2022, 11, 1871. [Google Scholar] [CrossRef] [PubMed]
- Stirk, W.A.; van Staden, J. Bioprospecting for bioactive compounds in microalgae: Antimicrobial compounds. Biotechnol. Adv. 2022, 59, 107977. [Google Scholar] [CrossRef]
- Jain, P.; Minhas, A.K.; Shukla, S.; Puri, M.; Barrow, C.J.; Mandal, S. Bioprospecting Indigenous Marine Microalgae for Polyunsaturated Fatty Acids Under Different Media Conditions. Front. Bioeng. Biotechnol. 2022, 10, 13. [Google Scholar] [CrossRef]
- Fu, Y. The potentials and challenges of using microalgae as an ingredient to produce meat analogues. Trends Food Sci. Technol. 2021, 13, 188–200. [Google Scholar] [CrossRef]
- Michel, F.; Knaapila, A.; Hartmann, C.; Siegrist, M. A multi-national comparison of meat eaters’ attitudes and expectations for burgers containing beef, pea or algae protein. Food Qual. Prefer. 2021, 91, 104195. [Google Scholar] [CrossRef]
- Sharif, M.; Zafar, M.H.; Aqib, A.I.; Saeed, M.; Farag, M.R.; Alagawany, M. Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture 2020, 531, 735885. [Google Scholar] [CrossRef]
- Yadav, G.; Shanmugam, S.; Sivaramakrishnan, R.; Kumar, D.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A.; Rajendran, K. Mechanism and challenges behind algae as a wastewater treatment choice for bioenergy production and beyond. Fuel 2020, 285, 119093. [Google Scholar] [CrossRef]
- Ullmann, J.; Grimm, D. Algae and their potential for a future bioeconomy, landless food production, and the socio-economic impact of an algae industry. Org. Agric. 2021, 11, 261–267. [Google Scholar] [CrossRef]
- Vazquez Calderon, F.; Sanchez Lopez, J. An Overview of the Algae Industry in Europe: Producers, Production Systems, Species, Biomass Uses, Other Steps in the Value Chain and Socio-Economic Data; Publications Office of the European Union: Luxembourg, 2022; ISBN 978-92-76-54516-3.
- Archer, L.; Mc Gee, D.; Paskuliakova, A.; McCoy, G.R.; Smyth, T.; Gillespie, E.; Touzet, N. Fatty acid profiling of new Irish microalgal isolates producing the high-value metabolites EPA and DHA. Algal Res. 2019, 44, 101671. [Google Scholar] [CrossRef]
- Khatoon, H.; Haris, N.; Banerjee, S.; Rahman, N.A.; Begum, H.; Mian, S.; Abol-Munafi, A.B.; Endut, A. Effects of different salinities on the growth and proximate composition of Dunaliella sp. isolated from South China Sea at different growth phases. Process. Saf. Environ. Prot. 2017, 112, 280–287. [Google Scholar] [CrossRef]
- Molino, A.; Rimauro, J.; Casella, P.; Cerbone, A.; Larocca, V.; Chianese, S.; Karatza, D.; Mehariya, S.; Ferraro, A.; Hristoforou, E.; et al. Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction. J. Biotechnol. 2018, 283, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Anand, V.; Kashyap, M.; Samadhiya, K.; Ghosh, A.; Kiran, B. Salinity driven stress to enhance lipid production in Scenedesmus vacuolatus: A biodiesel trigger? Biomass-Bioenergy 2019, 127, 105252. [Google Scholar] [CrossRef]
- Chokshi, K.; Pancha, I.; Ghosh, A.; Mishra, S. Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. Bioresour. Technol. 2017, 244, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- El Arroussi, H.; Benhima, R.; Bennis, I.; El Mernissi, N.; Wahby, I. Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress. Renew. Energy 2015, 77, 15–19. [Google Scholar] [CrossRef]
- Paliwal, C.; Mitra, M.; Bhayani, K.; Bharadwaj, S.V.V.; Ghosh, T.; Dubey, S.; Mishra, S. Abiotic stresses as tools for metabolites in microalgae. Bioresour. Technol. 2017, 244, 1216–1226. [Google Scholar] [CrossRef] [PubMed]
- Qiao, T.; Zhao, Y.; Zhong, D.-B.; Yu, X. Hydrogen peroxide and salinity stress act synergistically to enhance lipids production in microalga by regulating reactive oxygen species and calcium. Algal Res. 2021, 53, 102017. [Google Scholar] [CrossRef]
- Rismani, S.; Shariati, M. Changes of the Total Lipid and Omega-3 Fatty Acid Contents in two Microalgae Dunaliella Salina and Chlorella Vulgaris under Salt Stress. Braz. Arch. Biol. Technol. 2017, 60. [Google Scholar] [CrossRef]
- Schwenk, D.; Seppälä, J.; Spilling, K.; Virkki, A.; Tamminen, T.; Oksman-Caldentey, K.-M.; Rischer, H. Lipid content in 19 brackish and marine microalgae: Influence of growth phase, salinity and temperature. Aquat. Ecol. 2013, 47, 415–424. [Google Scholar] [CrossRef]
- Takagi, M.; Karseno; Yoshida, T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 2006, 101, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Assunção, P.; Jaén-Molina, R.; Caujapé-Castells, J.; de la Jara, A.; Carmona, L.; Freijanes, K.; Mendoza, H. Molecular taxonomy of Dunaliella (Chlorophyceae), with a special focus on D. salina: ITS2 sequences revisited with an extensive geographical sampling. Aquat. Biosyst. 2012, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.; Förster, F.; Müller, T.; Dandekar, T.; Schultz, J.; Wolf, M. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biol. Direct 2010, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Beuzenberg, V.; Smith, K.; Packer, M. Isolation and characterisation of halo-tolerant Dunaliella strains from Lake Grassmere/Kapara Te Hau, New Zealand. N. Z. J. Bot. 2014, 52, 136–152. [Google Scholar] [CrossRef]
- Pereira, H.; Barreira, L.; Mozes, A.; Florindo, C.; Polo, C.; Duarte, C.V.; Custódio, L.; Varela, J. Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae. Biotechnol. Biofuels 2011, 4, 61. [Google Scholar] [CrossRef]
- Borghini, M.; Bryden, H.; Schroeder, K.; Sparnocchia, S.; Vetrano, A. The Mediterranean is becoming saltier. Ocean Sci. 2014, 10, 693–700. [Google Scholar] [CrossRef]
- Pereira, H.; Barreira, L.; Custódio, L.; Alrokayan, S.; Mouffouk, F.; Varela, J.; Abu-Salah, K.M.; Ben-Hamadou, R. Isolation and Fatty Acid Profile of Selected Microalgae Strains from the Red Sea for Biofuel Production. Energies 2013, 6, 2773–2783. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Anisimova, M.; Gascuel, O. Approximate Likelihood-Ratio Test for Branches: A Fast, Accurate, and Powerful Alternative. Syst. Biol. 2006, 55, 539–552. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Seibel, P.N.; Müller, T.; Dandekar, T.; Schultz, J.; Wolf, M. 4SALE—A tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinform. 2006, 7, 498. [Google Scholar] [CrossRef] [PubMed]
- Schultz, J.; Wolf, M. ITS2 sequence–structure analysis in phylogenetics: A how-to manual for molecular systematics. Mol. Phylogenetics Evol. 2009, 52, 520–523. [Google Scholar] [CrossRef]
- Sluiter, A.; Hanes, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass Laboratory Analytical Procedure (LAP); National Renewable Energy Laboratory: Golden, CO, USA, 2005; p. 8.
- Lourenço, S.O.; Barbarino, E.; Lavin, P.; Marquez, U.M.L.; Aidar, E. Distribution of intracellular nitrogen in marine microalgae: Calculation of new nitrogen-to-protein conversion factors. Eur. J. Phycol. 2004, 39, 17–32. [Google Scholar] [CrossRef]
- Lima, A.R.; Castañeda-Loaiza, V.; Salazar, M.; Nunes, C.; Quintas, C.; Gama, F.; Pestana, M.; Correia, P.J.; Santos, T.; Varela, J.; et al. Influence of cultivation salinity in the nutritional composition, antioxidant capacity and microbial quality of Salicornia ramosissima commercially produced in soilless systems. Food Chem. 2020, 333, 127525. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.; Barreira, L.; Figueiredo, F.; Custódio, L.; Vizetto-Duarte, C.; Polo, C.; Rešek, E.; Engelen, A.; Varela, J. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications. Mar. Drugs 2012, 10, 1920–1935. [Google Scholar] [CrossRef] [PubMed]
- Oser, B.L. An Integrated Essential Amino Acid Index for Predicting the Biological Value of Proteins. In Protein and Amino Acid Nutrition; Elsevier: Amsterdam, The Netherlands, 1959; pp. 281–295. [Google Scholar]
- Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint WHO/FAO/UNU Expert Consultation; [Geneva, 9–16 April 2002]; Weltgesundheitsorganisation; FAO; Vereinte Nationen (Eds.) WHO Technical Report Series; WHO: Geneva, Switzerland, 2007; ISBN 978-92-4-120935-9.
- Kent, M.; Welladsen, H.M.; Mangott, A.; Li, Y. Nutritional Evaluation of Australian Microalgae as Potential Human Health Supplements. PLoS ONE 2015, 10, e0118985. [Google Scholar] [CrossRef]
- Schüler, L.M.; Gangadhar, K.N.; Duarte, P.; Placines, C.; Molina-Márquez, A.M.; Léon-Bañares, R.; Sousa, V.S.; Varela, J.; Barreira, L. Improvement of carotenoid extraction from a recently isolated, robust microalga, Tetraselmis sp. CTP4 (chlorophyta). Bioprocess Biosyst. Eng. 2020, 43, 785–796. [Google Scholar] [CrossRef]
- Tran, D.; Vo, T.; Portilla, S.; Louime, C.; Doan, N.; Mai, T.; Tran, D.; Ho, T. Phylogenetic study of some strains of Dunaliella. Am. J. Environ. Sci. 2013, 9, 317–321. [Google Scholar] [CrossRef]
- Henley, W.J.; Cobbs, M.; Novoveská, L.; Buchheim, M.A. Phylogenetic analysis of Dunaliella (Chlorophyta) emphasizing new benthic and supralittoral isolates from Great Salt Lake. J. Phycol. 2018, 54, 483–493. [Google Scholar] [CrossRef]
- Vanitha, A.; Narayan, M.S.; Murthy, K.N.C.; Ravishankar, G.A. Comparative study of lipid composition of two halotolerant alga, Dunaliellabardawil and Dunaliellasalina. Int. J. Food Sci. Nutr. 2007, 58, 373–382. [Google Scholar] [CrossRef]
- Richmond, A. (Ed.) CRC Handbook of Microalgal Mass Culture (1986), 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-0-203-71240-5. [Google Scholar]
- Di Lena, G.; Casini, I.; Lucarini, M.; del Pulgar, J.S.; Aguzzi, A.; Caproni, R.; Gabrielli, P.; Lombardi-Boccia, G. Chemical characterization and nutritional evaluation of microalgal biomass from large-scale production: A comparative study of five species. Eur. Food Res. Technol. 2019, 246, 323–332. [Google Scholar] [CrossRef]
- Borowitzka, M.A. Biology of Microalgae. In Microalgae in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2018; pp. 109–131. ISBN 978-0-12-811405-6. [Google Scholar]
- Molino, A.; Iovine, A.; Casella, P.; Mehariya, S.; Chianese, S.; Cerbone, A.; Rimauro, J.; Musmarra, D. Microalgae Characterization for Consolidated and New Application in Human Food, Animal Feed and Nutraceuticals. Int. J. Environ. Res. Public Health 2018, 15, 2436. [Google Scholar] [CrossRef] [PubMed]
- Muhaemin, M.; Kaswadji, R. Biomass Nutrient Profiles of Marine Microalgae Dunaliella salina. J. Penelit. Sains 2010, 13, 64–67. [Google Scholar]
- Murthy, K.N.C. Production of Beta-Carotene from Cultured Dunaliella sp. and Evaluation Biological Activities. Ph.D. Thesis., University of Mysore, Mysuru, India, 2005. [Google Scholar]
- Wang, Y.; Cong, Y.; Wang, Y.; Guo, Z.; Yue, J.; Xing, Z.; Gao, X.; Chai, X. Identification of Early Salinity Stress-Responsive Proteins in Dunaliella salina by isobaric tags for relative and absolute quantitation (iTRAQ)-Based Quantitative Proteomic Analysis. Int. J. Mol. Sci. 2019, 20, 599. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Gao, X.; Wang, M.; Cong, Y.; Chai, X. Identification of salt-responsive genes using transcriptome analysis in Dunaliella viridis. J. Appl. Phycol. 2020, 32, 2875–2887. [Google Scholar] [CrossRef]
- Borowitzka, M.A.; Siva, C.J. The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J. Appl. Phycol. 2007, 19, 567–590. [Google Scholar] [CrossRef]
- Evans, R.W.; Kates, M. Lipid composition of halophilic species of Dunaliella from the dead sea. Arch. Microbiol. 1984, 140, 50–56. [Google Scholar] [CrossRef]
- El-Baky, H.H.A.; El Baz, F.K.; El-Baroty, G.S. Production of Lipids Rich in Omega 3 Fatty Acids from the Halotolerant Alga Dunaliella salina. Biotechnology 2003, 3, 102–108. [Google Scholar] [CrossRef]
- Talebi, A.F.; Tohidfar, M.; Derazmahalleh, S.M.M.; Sulaiman, A.; Baharuddin, A.S.; Tabatabaei, M. Biochemical Modulation of Lipid Pathway in Microalgae Dunaliella sp. for Biodiesel Production. BioMed Res. Int. 2015, 2015, 1–12. [Google Scholar] [CrossRef]
- Muhaemin, M. Toxicity and Bioacumulation of lead in Chlorella and Dunaliella. J. Coast. Dev. 2004, 8, 27–33. [Google Scholar]
- Fakhry, E.M.; El Maghraby, D.M. Fatty Acids Composition and Biodiesel Characterization of Dunaliella salina. J. Water Resour. Prot. 2013, 05, 894–899. [Google Scholar] [CrossRef]
- Al-Hasan, R.H.; Ghannoum, M.A.; Sallal, A.-K.; Abu-Elteen, K.H.; Radwan, S.S. Correlative Changes of Growth, Pigmentation and Lipid Composition of Dunaliella salina in Response to Halostress. Microbiology 1987, 133, 2607–2616. [Google Scholar] [CrossRef]
- Zhila, N.O.; Kalacheva, G.S.; Volova, T.G. Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252. J. Appl. Phycol. 2010, 23, 47–52. [Google Scholar] [CrossRef]
- de Morais, E.G.; Cristofoli, N.L.; Bombo, G.d.C.; Maia, I.B.; Cassuriaga, A.P.A.; Costa, J.A.V.; de Morais, M.G.; Bar, S.Y.; Avni, D.; Varela, J.; et al. Spirulina as Immune System Potentiator. In Spirulina and its Health Benefits; Nova Science Publishers: Hauppauge, NY, USA, 2021; pp. 1–44. ISBN 978-1-68507-018-2. [Google Scholar]
- da Silva Gorgonio, C.M.; Aranda, D.A.G.; Couri, S. Morphological and chemical aspects of Chlorella pyrenoidosa, Dunaliella tertiolecta, Isochrysis galbana and Tetraselmis gracilis microalgae. Nat. Sci. 2013, 5, 783–791. [Google Scholar] [CrossRef]
- Sui, Y.; Harvey, P. Effect of Light Intensity and Wavelength on Biomass Growth and Protein and Amino Acid Composition of Dunaliella salina. Foods 2021, 10, 1018. [Google Scholar] [CrossRef] [PubMed]
- Shioji, Y.; Kobayashi, T.; Yoshida, T.; Otagiri, T.; Onoda, K.; Yoshioka, Y.; Sasada, T.; Miyoshi, N. Nitrogen Balance and Bioavailability of Amino Acids in Spirulina Diet-Fed Wistar Rats. J. Agric. Food Chem. 2021, 69, 13780–13786. [Google Scholar] [CrossRef] [PubMed]
- Becker, E. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef] [PubMed]
- E Holt, L.; E Snyderman, S. Protein and amino acid requirements of infants and children. Nutr. Abstr. Rev. 1965, 35, 1–13. [Google Scholar]
- Sui, Y.; Muys, M.; Van de Waal, D.; D’Adamo, S.; Vermeir, P.; Fernandes, T.V.; Vlaeminck, S.E. Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity. Bioresour. Technol. 2019, 287, 121398. [Google Scholar] [CrossRef]
- Sui, Y.; Muys, M.; Vermeir, P.; D’Adamo, S.; Vlaeminck, S.E. Light regime and growth phase affect the microalgal production of protein quantity and quality with Dunaliella salina. Bioresour. Technol. 2018, 275, 145–152. [Google Scholar] [CrossRef]
- Fal, S.; Aasfar, A.; Rabie, R.; Smouni, A.; Arroussi, H.E. Salt induced oxidative stress alters physiological, biochemical and metabolomic responses of green microalga Chlamydomonas reinhardtii. Heliyon 2022, 8, e08811. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for the Eastern Mediterranean Eastern Mediterranean Health Journal. East. Mediterr. Health J. 2018, 24, 17–62. [Google Scholar]
- Morsy, O.M. Production and evaluation of some extruded food products using spirulina algae. Ann. Agric. Sci. Moshtohor 2014, 52, 495–510. [Google Scholar] [CrossRef]
- Rzymski, P.; Budzulak, J.; Niedzielski, P.; Klimaszyk, P.; Proch, J.; Kozak, L.; Poniedziałek, B. Essential and toxic elements in commercial microalgal food supplements. J. Appl. Phycol. 2018, 31, 3567–3579. [Google Scholar] [CrossRef]
- Diprat, A.B.; Menegol, T.; Boelter, J.F.; Zmozinski, A.; Vale, M.G.R.; Rodrigues, E.; Rech, R. Chemical composition of microalgae Heterochlorella luteoviridis and Dunaliella tertiolecta with emphasis on carotenoids. J. Sci. Food Agric. 2017, 97, 3463–3468. [Google Scholar] [CrossRef]
- Varela-Bojórquez, N.; Vélez-De La Rocha, R.; Ángel, M.; Escalante, A.; Sañudo-Barajas, J.A. Production of Bioethanol from Biomass of Microalgae Dunaliella tertiolecta. Int. J. Environ. Agric. Res. 2016, 2, 110–116. [Google Scholar]
- Gong, X.; Zhang, B.; Zhang, Y.; Huang, Y.; Xu, M. Investigation on Pyrolysis of Low Lipid Microalgae Chlorella vulgaris and Dunaliella salina. Energy Fuels 2014, 28, 95–103. [Google Scholar] [CrossRef]
- Institute of Medicine (U.S.) (Ed.) DRI: Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc: A Report of the Panel on Micronutrients … and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine; National Academy Press: Washington, DC, USA, 2001; ISBN 978-0-309-07279-3. [Google Scholar]
- Rzymski, P.; Niedzielski, P.; Karczewski, J.; Poniedziałek, B. Biosorption of toxic metals using freely suspended Microcystis aeruginosa biomass. Cent. Eur. J. Chem. 2014, 12, 1232–1238. [Google Scholar] [CrossRef]
- Kutlu, B.; Mutlu, E. Growth and Bioaccumulation of Cadmium, Zinc, Lead, Copper in Dunaliella sp. Isolated from Homa Lagoon, Eastern Aegean Sea; NISCAIR-CSIR: New Delhi, India, 2017; Volume 46. [Google Scholar]
- Wu, Y. Genral Standard for Contaminants and Toxins in Food and Feed (DOEX STAN 193-1995) Adopted in 1995. Revised in 1997, 2006, 2008, 2009. Amendment 2010, 2012, 2013, 2014. 2014. Joint FAO/WHO Codex Alimentarius Commission. Codex Aliment. 2014. [Google Scholar] [CrossRef]
- Fu, W.; Paglia, G.; Magnusdottir, M.; A Steinarsdóttir, E.; Gudmundsson, S.; Palsson, B.; Andrésson, S.; Brynjolfsson, S. Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina. Microb. Cell Factories 2014, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Mageswari, A.; Subramanian, P.; Suganthi, C.; Chaitanyakumar, A.; Aswini, V.; Gothandam, K.M. Bicarbonate supplementation enhances growth and biochemical composition of Dunaliella salina V-101 by reducing oxidative stress induced during macronutrient deficit conditions. Sci. Rep. 2018, 8, 6972. [Google Scholar] [CrossRef]
- Lv, H.; Cui, X.; Wahid, F.; Xia, F.; Zhong, C.; Jia, S. Analysis of the Physiological and Molecular Responses of Dunaliella salina to Macronutrient Deprivation. PLoS ONE 2016, 11, e0152226. [Google Scholar] [CrossRef] [PubMed]
- Moulton, T.P.; Burford, M.A. The mass culture of Dunaliella viridis (Volvocales, Chlorophyta) for oxygenated carotenoids: Laboratory and pilot plant studies. Hydrobiologia 1990, 204–205, 401–408. [Google Scholar] [CrossRef]
- MMR Lutein Market—Global Industry Analysis and Forecast (2022–2029); Maximize Market Research: Maharashtra, India, 2023.
- Hu, C.-C.; Lin, J.-T.; Lu, F.-J.; Chou, F.-P.; Yang, D.-J. Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract. Food Chem. 2008, 109, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Colusse, G.A.; Mendes, C.R.B.; Duarte, M.E.R.; de Carvalho, J.C.; Noseda, M.D. Effects of different culture media on physiological features and laboratory scale production cost of Dunaliella salina. Biotechnol. Rep. 2020, 27, e00508. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Cui, Y.; Yan, M.; Wang, Y.; Gao, Z.; Meng, C.; Qin, S. Construction of astaxanthin metabolic pathway in the green microalga Dunaliella viridis. Algal Res. 2019, 44, 101697. [Google Scholar] [CrossRef]
Primer | Sequence | Tm (°C) | GC (%) |
---|---|---|---|
18S-F | 5′-ACCTGGTTGATCCTGCCAGT-3′ | 61.14 | 55 |
18S-R | 5′-TCAGCCTTGCGACCATAC-3′ | 57.07 | 55.56 |
ITS1-5.8S-ITS2-F | 5′-GTGAACCTGCGGAAGGAT-3′ | 55.96 | 55.56 |
ITS1-5.8S-ITS2-R | 5′-TCAGCGGGTGGTCTTGCT-3′ | 61.42 | 61.11 |
Contents | Dunaliella viridis TAV01 | Dunaliella salina1 | Dunaliella salina2 | Dunaliella bardawil3 |
---|---|---|---|---|
Moisture | 5.01 ± 0.11 | n.d. | n.d. | n.d. |
Ash | 23.7 ± 1.0 | 48.7 ± 2.5 | 15.89 | 22.8 ± 1.2 |
Lipids | 21.3 ± 0.9 | 3.49 ± 0.10 | 18.02 | 7.80 ± 0.38 |
Proteins | 35.7 ± 1.8 | 10.03 ± 0.57 | 25.67 | 21.5 ± 0.8 |
TDF | 9.06 ± 0.01 | 8.97 ± 0.50 | 2.10 | n.d. |
Fatty Acid (% of TFA) | Dunaliella viridis TAV01 | Dunaliella viridis1 | Dunaliella salina2 | Dunaliella sp. 3 | |
---|---|---|---|---|---|
C8:0 | Octanoic acid | nd | nd | 0.41 | nd |
C10:0 | Decanoic acid | nd | nd | 0.13 | nd |
C12:0 | Lauric acid | nd | nd | 0.21 | nd |
C14:0 | Myristic acid | 1.27 ± 0.01 | 0.2 ± 0.1 | nd | nd |
C15:0 | Pentadecanoic acid | 1.79 ± 0.07 | 0.5 ± 0.1 | nd | nd |
C16:0 | Palmitic acid | 32.1 ± 0.6 | 17.9 ± 0.5 | 14.12 | 9.19 ± 1.2 |
C18:0 | Stearic acid | nd | 2.2 ± 0.1 | nd | 4.27 ± 0.9 |
C20:0 | Eicosanoic acid | 1.34 ± 0.19 | nd | 1.23 | nd |
C21:0 | Heneicosanoic acid | 1.77 ± 0.18 | nd | Nd | nd |
C22:0 | Arachidic acid | 0.22 ± 0.01 | 0.9 ± 0.1 | 2.41 | nd |
C24:0 | Lignoceric acid | 2.92 ± 0.75 | nd | nd | nd |
Σ SFA | 42.0 ± 0.3 | 21.7 | 18.51 | 13.47 | |
C14:1 | Myristoleic acid | nd | 0.3 ± 0.1 | nd | nd |
C15:1 | Pentadecenoic acid | nd | 1.4 ± 0.1 | nd | nd |
C16:1 | Palmitoleic acid | 5.66 ± 0.32 | 2.5 ± 0.0 | 2.57 | 0.80 ± 0.8 |
C17:1 | Heptadecenoic acid | nd | 3.4 ± 0.1 | nd | nd |
C18:1n-9c | Oleic acid | 2.62 ± 0.76 | 8.4 ± 0.1 | 1.12 | 22.51 ± 0.7 |
C20:1n-9 | cis-11-Eicosenoic acid | nd | nd | nd | 1.42 ± 0.2 |
C22:1 | Erucic acid | nd | nd | nd | nd |
Σ MUFA | 8.28 ± 0.31 | 16 | 3.69 | 24.74 | |
C16:2 | Hexadecadienoicacid | nd | 0.1 ± 0.1 | nd | nd |
C16:4 | Hexadecatetraenoic acid | nd | 10.5 ± 0.5 | nd | nd |
C18:3n-6 | γ-Linolenic acid | 0.16 ± 0.03 | 0.8 ± 0.2 | nd | nd |
C18:3n-3 | α-Linolenic acid | 26.3 ± 0.9 | 26.8 ± 0.2 | 14.79 | nd |
C18:3 | nd | nd | nd | 44.31 ± 2.1 | |
C18:2n-6 | Linoleic acid | 22.8 ± 0.1 | 24.0 ± 0.4 | 2.11 | 3.84 ± 0.4 |
C20:4n-6 | Arachidonic acid | 0.43 ± 0.26 | nd | 4.17 | nd |
C22:6n-3 | cis-4,7,10,13,16,19-Docosahexaenoic acid | nd | nd | 6.92 | nd |
Σ PUFA | 49.7 ± 0.6 | 62.2 | 27.99 | 48.15 | |
Σ (n-3) | 26.3 ± 0.9 | ||||
Σ (n-6) | 23.4 ± 0.1 | ||||
Σ (n-3)/Σ (n-6) | 1.12 ± 8.24 | ||||
PUFA/Σ SFA | 1.19 ± 0.18 |
Amino Acid | D. viridis TAV01 | D. tertiolecta1 | D. salina2 | Spirulina 3 | Chlorella sp. 4 | Soy Protein 4 |
---|---|---|---|---|---|---|
Alanine | 6.49 ± 0.14 | 7.27 ± 0.03 | nr | 7.99 | 7.90 | 5.00 |
Arginine | 13.0 ± 0.2 | 16.09 ± 0.06 | nr | 6.88 | 6.40 | 7.40 |
Aspartic Acid | 3.05 ± 0.02 | 9.02 ± 0.09 | nr | 9.70 | 9.00 | 1.30 |
Cysteine | 0.74 ± 0.02 | 1.59 ± 0.04 | nr | 0.90 | 1.40 | 1.90 |
Glutamic Acid | 6.04 ± 0.2 | 12.98 ± 0.09 | nr | 12.95 | 11.60 | 19.00 |
Glycine | 6.13 ± 0.01 | 5.96 ± 0.08 | nr | 5.11 | 5.80 | 4.50 |
Histidine * | 1.73 ± 0.02 | 1.29 ± 0.01 | 1.11 | 1.90 | 2.00 | 2.60 |
Isoleucine * | 5.02 ± 0.04 | 3.15 ± 0.05 | 1.95 | 5.76 | 3.80 | 5.30 |
Leucine * | 9.27 ± 0.06 | 7.59 ± 0.05 | 3.48 | 9.27 | 8.80 | 7.70 |
Lysine * | 5.56 ± 0.17 | 4.66 ± 0.08 | 1.41 | 4.85 | 8.40 | 6.40 |
Methionine * | 3.73 ± 0.00 | 1.50 ± 0.02 | 7.37 | 2.48 | 2.20 | 1.30 |
Phenylalanine * | 7.44 ± 0.02 | 5.00 ± 0.04 | 11.84 | 4.83 | 5.00 | 5.00 |
Proline | 8.34 ± 0.11 | 4.35 ± 0.01 | nr | 3.99 | 4.80 | 5.30 |
Serine | 5.23 ± 0.04 | 4.90 ± 0.04 | nr | 5.15 | 4.10 | 5.80 |
Threonine * | 5.70 ± 0.00 | 4.94 ± 0.07 | 2.69 | 5.29 | 4.80 | 4.00 |
Tryptophan * | nd | 1.64 ± 0.05 | 0.00 | 1.74 | 2.10 | 1.40 |
Tyrosine | 6.08 ± 0.01 | 3.08 ± 0.03 | nr | 4.72 | 3.40 | 3.70 |
Valine * | 6.44 ± 0.12 | 5.02 ± 0.04 | 3.20 | 6.39 | 5.50 | 5.30 |
Taurine | 0.54 ± 0.02 | nr | nr | nr | Nr | Nr |
EAA | 44.88 | 34.78 | 33.05 | 42.51 | 42.60 | 39.00 |
EAAI | 1.80 | 1.33 | 0.99 | 1.67 | 1.63 | 1.61 |
Macroelements (mg g−1 DW) | |||||||||||
Ca | Fe | K | Mg | Na | P | ||||||
3.18 ± 0.04 | 3.67 ± 0.03 | 5.10 ± 0.04 | 5.78 ± 0.07 | 41.5 ± 0.1 | 9.79 ± 0.04 | ||||||
Microelements (mg 100 g−1 DW) | |||||||||||
Si | Sr | Zn | Cd | V | Ba | Cu | As | Pb | Mn | Cr | Al |
13.1 ± 1.56 | 8.40 ± 0.39 | 8.66 ± 0.02 | 0.07 ± 0.01 | 4.95 ± 0.10 | 0.21 ± 0.01 | 2.16 ± 0.01 | 4.30 ± 1.56 | 7.83 ± 0.01 | 4.53 ± 0.03 | 0.04 ± 0.01 | 1.01 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bombo, G.; Cristofoli, N.L.; Santos, T.F.; Schüler, L.; Maia, I.B.; Pereira, H.; Barreira, L.; Varela, J. Dunaliella viridis TAV01: A Halotolerant, Protein-Rich Microalga from the Algarve Coast. Appl. Sci. 2023, 13, 2146. https://doi.org/10.3390/app13042146
Bombo G, Cristofoli NL, Santos TF, Schüler L, Maia IB, Pereira H, Barreira L, Varela J. Dunaliella viridis TAV01: A Halotolerant, Protein-Rich Microalga from the Algarve Coast. Applied Sciences. 2023; 13(4):2146. https://doi.org/10.3390/app13042146
Chicago/Turabian StyleBombo, Gabriel, Nathana L. Cristofoli, Tamára F. Santos, Lisa Schüler, Inês B. Maia, Hugo Pereira, Luísa Barreira, and João Varela. 2023. "Dunaliella viridis TAV01: A Halotolerant, Protein-Rich Microalga from the Algarve Coast" Applied Sciences 13, no. 4: 2146. https://doi.org/10.3390/app13042146
APA StyleBombo, G., Cristofoli, N. L., Santos, T. F., Schüler, L., Maia, I. B., Pereira, H., Barreira, L., & Varela, J. (2023). Dunaliella viridis TAV01: A Halotolerant, Protein-Rich Microalga from the Algarve Coast. Applied Sciences, 13(4), 2146. https://doi.org/10.3390/app13042146