Biosignals by In-Shoe Plantar Pressure Sensors on Different Hardness Mats during Running: A Cross-Over Study
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethical Considerations
2.3. Participants and Recruitment
2.4. Descriptive Data
2.5. Procedure and Materials
2.6. Outcome Measurements
2.7. Sample Size Calculation
2.8. Statistical Analysis
3. Results
3.1. Descriptive Data
3.2. Outcome Measurements
4. Discussion
Limitations and Future Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goss, D.L.; Gross, M.T. A Review of Mechanics and Injury Trends among Various Running Styles. US Army Med. Dep. J. 2012, 62–71. [Google Scholar]
- Mann, R.; Malisoux, L.; Urhausen, A.; Meijer, K.; Theisen, D. Plantar Pressure Measurements and Running-Related Injury: A Systematic Review of Methods and Possible Associations. Gait Posture 2016, 47, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Fang, Y.; Liu, D.M.S.; Wang, L.; Ren, S.; Liu, Y. Surface Effects on In-Shoe Plantar Pressure and Tibial Impact during Running. J. Sport Health Sci. 2015, 4, 384–390. [Google Scholar] [CrossRef]
- García-Arroyo, J.; Pacheco-Da-Costa, S.; Molina-Rueda, F.; Alguacil-Diego, I.M. Analysis of Plantar Pressure during the Running in Place over Different Surfaces. Rev. Int. Med. Cienc. Act. Física Deporte 2022, 8, 863–875. [Google Scholar]
- Roca-Dols, A.; Losa-Iglesias, M.E.; Sánchez-Gómez, R.; Becerro-de-Bengoa-Vallejo, R.; López-López, D.; Rodríguez-Sanz, D.; Jiménez, E.M.M.; Calvo-Lobo, C. Effect of the Cushioning Running Shoes in Ground Contact Time of Phases of Gait. J. Mech. Behav. Biomed. Mater. 2018, 88, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Nüesch, C.; Overberg, J.A.; Schwameder, H.; Pagenstert, G.; Mündermann, A. Repeatability of Spatiotemporal, Plantar Pressure and Force Parameters during Treadmill Walking and Running. Gait Posture 2018, 62, 117–123. [Google Scholar] [CrossRef]
- Schaff, P.; Hauser, W. Dynamic Measurement of Pressure Distribution with Flexible Measuring Mats—An Innovative Measuring Procedure in Sports Orthopedics and Traumatology. Sportverletz. Sportschaden Organ Der Ges. Fur Orthop.-Traumatol. Sportmed. 1987, 1, 185–222. [Google Scholar] [CrossRef] [PubMed]
- Kale, M.; Aşçi, A.; Bayrak, C.; Açikada, C. Relationships among Jumping Performances and Sprint Parameters during Maximum Speed Phase in Sprinters. J. Strength. Cond. Res. 2009, 23, 2272–2279. [Google Scholar] [CrossRef]
- Wilson, J.F.; Rochelle, R.D. Footfall Dynamics for Racewalkers and Runners Barefoot on Compliant Surfaces. J. Biomech. 2009, 42, 2472–2478. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. STROBE Initiative Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. Int. J. Surg. 2014, 12, 1500–1524. [Google Scholar] [CrossRef]
- World Medical Association Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. J. Am. Coll. Dent. 2014, 81, 14–18.
- Kim, Y.; Park, I.; Kang, M. Convergent Validity of the International Physical Activity Questionnaire (IPAQ): Meta-Analysis. Public Health Nutr. 2013, 16, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Hagstromer, M.; Oja, P.; Sjostrom, M. The International Physical Activity Questionnaire (IPAQ): A Study of Concurrent and Construct Validity. Public Health Nutr. 2006, 9, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Rajakaruna, R.; Arulsingh, W.; Raj, J.; Sinha, M. BMR Medicine-A Study to Correlate Clinically Validated Normalized Truncated Naavicular Height to Brody’s Navicular Drop Test in Characterizing Medial Arch of the Foot. BMR Med. 2016, 2, 1–7. [Google Scholar]
- Langarika-Rocafort, A.; Emparanza, J.I.; Aramendi, J.F.; Castellano, J.; Calleja-González, J. Intra-Rater Reliability and Agreement of Various Methods of Measurement to Assess Dorsiflexion in the Weight Bearing Dorsiflexion Lunge Test (WBLT) among Female Athletes. Phys. Ther. Sport 2017, 23, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Kuegler, P.; Wurzer, P.; Tuca, A.; Sendlhofer, G.; Lumenta, D.B.; Giretzlehner, M.; Kamolz, L.-P. Goniometer-Apps in Hand Surgery and Their Applicability in Daily Clinical Practice. Saf. Health 2015, 1, 11. [Google Scholar] [CrossRef]
- Pourahmadi, M.R.; Taghipour, M.; Jannati, E.; Mohseni-Bandpei, M.A.; Takamjani, I.E.; Rajabzadeh, F. Reliability and Validity of an IPhone(®) Application for the Measurement of Lumbar Spine Flexion and Extension Range of Motion. PeerJ 2016, 4, e2355. [Google Scholar] [CrossRef]
- Velotta, J.; Weyer, J.; Ramirez, A.; Winstead, J.; Bahamonde, R. Relationship between Leg Dominance Tests and Type of Task. Port. J. Sport Sci. 2011, 30, 1035–1038. [Google Scholar]
- Alberton, C.L.; Pinto, S.S.; da Silva Azenha, N.A.; Cadore, E.L.; Tartaruga, M.P.; Brasil, B.; Kruel, L.F.M. Kinesiological Analysis of Stationary Running Performed in Aquatic and Dry Land Environments. J. Hum. Kinet. 2015, 49, 5–14. [Google Scholar] [CrossRef]
- Stöggl, T.; Martiner, A. Validation of Moticon’s OpenGo Sensor Insoles during Gait, Jumps, Balance and Cross-Country Skiing Specific Imitation Movements. J. Sport. Sci. 2017, 35, 196–206. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, L.; Li, J.X.; Zhou, J.H. Comparison of Plantar Loads during Treadmill and Overground Running. J. Sci. Med. Sport 2012, 15, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Salkind, N. Cohen’s f Statistic. In Encyclopedia of Research Design; SAGE Publications, Inc.: New York, NY, USA, 2012. [Google Scholar]
- Tessutti, V.; Trombini-Souza, F.; Ribeiro, A.P.; Nunes, A.L.; Sacco, I.d.C.N. In-Shoe Plantar Pressure Distribution during Running on Natural Grass and Asphalt in Recreational Runners. J. Sci. Med. Sport 2010, 13, 151–155. [Google Scholar] [CrossRef]
- Wang, L.; Hong, Y.; Li, J.X.; Zhou, J.H. Comparison of Plantar Loads during Running on Different Overground Surfaces. Res. Sport. Med. 2012, 20, 75–85. [Google Scholar] [CrossRef]
- Sáez De Villarreal, E.; Suarez-Arrones, L.; Requena, B.; Haff, G.G.; Ferrete, C. Effects of Plyometric and Sprint Training on Physical and Technical Skill Performance in Adolescent Soccer Players. J. Strength Cond. Res. 2015, 29, 1894–1903. [Google Scholar] [CrossRef]
- Grimmer, S.; Ernst, M.; Günther, M.; Blickhan, R. Running on Uneven Ground: Leg Adjustment to Vertical Steps and Self-Stability. J. Exp. Biol. 2008, 211, 2989–3000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamez-Paya, J.; Dueñas, L.; Arnal-Gómez, A.; Benítez-Martínez, J.C. Foot and Lower Limb Clinical and Structural Changes in Overuse Injured Recreational Runners Using Floating Heel Shoes: Preliminary Results of a Randomised Control Trial. Sensors 2021, 21, 7814. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.J.; Moody, A.L. Common Running Injuries: Evaluation and Management. Am. Fam. Physician 2018, 97, 510–516. [Google Scholar] [PubMed]
- Hähni, M.; Hirschmüller, A.; Baur, H. The effect of foot orthoses with forefoot cushioning or metatarsal pad on forefoot peak plantar pressure in running. J. Foot Ankle Res. 2016, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Molloy, J.M. Factors Influencing Running-Related Musculoskeletal Injury Risk among U.S. Military Recruits. Mil. Med. 2016, 181, 512–523. [Google Scholar] [CrossRef]
- Taunton, J.E.; Ryan, M.B.; Clement, D.B.; McKenzie, D.C.; Lloyd-Smith, D.R.; Zumbo, B.D. A Retrospective Case-Control Analysis of 2002 Running Injuries. Br. J. Sport. Med. 2002, 36, 95–101. [Google Scholar] [CrossRef]
- Liem, B.C.; Truswell, H.J.; Harrast, M.A. Rehabilitation and Return to Running after Lower Limb Stress Fractures. Curr. Sport. Med. Rep. 2013, 12, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Mirjalili, S.A.; Zhang, Y.; Xiang, L.; Gu, Y.; Fernandez, J. Effect of Gender and Running Experience on Lower Limb Biomechanics Following 5 Km Barefoot Running. Sport. Biomech. 2021. [Google Scholar] [CrossRef] [PubMed]
- Henshaw, F.R.; Bostan, L.E.; Worsley, P.R.; Bader, D.L. Evaluating the Effects of Sedentary Behaviour on Plantar Skin Health in People with Diabetes. J. Tissue Viability 2020, 29, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Sanchis, R.; Blasco-Lafarga, C.; Encarnación-Martínez, A.; Pérez-Soriano, P. Changes in plantar pressure and spatiotemporal parameters during gait in older adults after two different training programs. Gait Posture 2020, 77, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Paul, S.; Mourya, G.K.; Kumar, N.; Hussain, M. Recent Trends and Practices Toward Assessment and Rehabilitation of Neurodegenerative Disorders: Insights from Human Gait. Front. Neurosci. 2022, 16, 859298. [Google Scholar] [CrossRef]
Outcome Measurement | Soft Mat | Hard Mat | Air Chamber Mat | Friedman | Wilcoxon | |||||
---|---|---|---|---|---|---|---|---|---|---|
Median | IR | Median | IR | Median | IR | Chi | p-Value * | Z | p-Value † | |
Pmax | 174.50 | 148.25 | 272.50 | 184.25 | 310.50 | 250.25 | 46.58 | <0.01 | (a) −5.185 | (a) <0.01 |
(N) | (b) −5.216 | (b) <0.01 | ||||||||
(c) −1.483 | (c) 0.138 | |||||||||
PP1 | 5.30 | 3.38 | 7.05 | 5.88 | 6.80 | 6.70 | 19.98 | <0.01 | (a) −4.243 | (a) <0.01 |
(N/cm²) | (b) −3.355 | (b) 0.001 | ||||||||
(c) −1.202 | (c) 0.229 | |||||||||
PP2 | 3.05 | 3.28 | 5.65 | 7.25 | 6.45 | 9.30 | 40.62 | <0.01 | (a) −4.814 | (a) <0.01 |
(N/cm²) | (b) −5.131 | (b) <0.01 | ||||||||
(c) −3.009 | (c) 0.003 | |||||||||
PP3 | 2.90 | 1.63 | 5.15 | 3.13 | 5.15 | 2.57 | 29.67 | <0.01 | (a) −4.587 | (a) <0.01 |
(N/cm²) | (b) −4.808 | (b) <0.01 | ||||||||
(c) −1.434 | (c) 0.151 | |||||||||
PP4 | 3.00 | 1.90 | 4.00 | 1.93 | 3.80 | 2.05 | 8.13 | 0.017 | (a) −2.628 | (a) 0.009 |
(N/cm²) | (b) −1.591 | (b) 0.112 | ||||||||
(c) −1.317 | (c) 0.188 | |||||||||
PP5 | 1.70 | 1.57 | 1.70 | 1.98 | 2.05 | 2.43 | 8.71 | 0.138 | (a) −1.139 | (a) 0.255 |
(N/cm²) | (b) −2.320 | (b) 0.020 | ||||||||
(c) −1.747 | (c) 0.081 | |||||||||
PP6 | 2.70 | 1.88 | 2.40 | 1.73 | 2.05 | 1.70 | 11.61 | 0.003 | (a) −1.497 | (a) 0.134 |
(N/cm²) | (b) −2.805 | (b) 0.005 | ||||||||
(c) −2.349 | (c) 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Arroyo, J.; Pacheco-da-Costa, S.; Molina-Rueda, F.; Vicente-Campos, D.; Calvo-Lobo, C.; Alguacil-Diego, I.M. Biosignals by In-Shoe Plantar Pressure Sensors on Different Hardness Mats during Running: A Cross-Over Study. Appl. Sci. 2023, 13, 2157. https://doi.org/10.3390/app13042157
García-Arroyo J, Pacheco-da-Costa S, Molina-Rueda F, Vicente-Campos D, Calvo-Lobo C, Alguacil-Diego IM. Biosignals by In-Shoe Plantar Pressure Sensors on Different Hardness Mats during Running: A Cross-Over Study. Applied Sciences. 2023; 13(4):2157. https://doi.org/10.3390/app13042157
Chicago/Turabian StyleGarcía-Arroyo, Jaime, Soraya Pacheco-da-Costa, Francisco Molina-Rueda, Davinia Vicente-Campos, César Calvo-Lobo, and Isabel M. Alguacil-Diego. 2023. "Biosignals by In-Shoe Plantar Pressure Sensors on Different Hardness Mats during Running: A Cross-Over Study" Applied Sciences 13, no. 4: 2157. https://doi.org/10.3390/app13042157
APA StyleGarcía-Arroyo, J., Pacheco-da-Costa, S., Molina-Rueda, F., Vicente-Campos, D., Calvo-Lobo, C., & Alguacil-Diego, I. M. (2023). Biosignals by In-Shoe Plantar Pressure Sensors on Different Hardness Mats during Running: A Cross-Over Study. Applied Sciences, 13(4), 2157. https://doi.org/10.3390/app13042157