The Effect of Load Carrying on Gait Kinetic and Kinematic Variables in Soldiers with Patellofemoral Pain Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Research Protocol
2.3. Instrumentation
2.4. Statistical Analysis
3. Results
3.1. Study Sample
3.2. Maximal Joint Angle
3.3. Joint Range of Motion
3.4. Mean Peak Moments
3.5. Spatiotemporal Parameters
4. Discussion
4.1. Limitations of Study and Future Studies
4.2. Strengths of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knapik, J.J.; Reynolds, K.L.; Harman, E. Soldier Load Carriage: Historical, Physiological, Biomechanical, and Medical Aspects. Mil. Med. 2004, 169, 45–56. [Google Scholar] [CrossRef]
- Reynolds, K.L.; White, J.S.; Knapik, J.J.; Witt, C.E.; Amoroso, P.J. Injuries and Risk Factors in a 100-Mile (161-km) Infantry Road March. Prev. Med. 1999, 28, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Walsh, G.S.; Low, D.C. Military load carriage effects on the gait of military personnel: A systematic review. Appl. Ergon. 2021, 93, 103376. [Google Scholar] [CrossRef] [PubMed]
- Birrell, S.A.; Hooper, R.H.; Haslam, R.A. The effect of military load carriage on ground reaction forces. Gait Posture 2007, 26, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, D.; Pal, M.S.; Majumdar, D. Effects of military load carriage on kinematics of gait. Ergonomics 2010, 53, 782–791. [Google Scholar] [CrossRef]
- Krupenevich, R.; Rider, P.; Domire, Z.; DeVita, P. Males and Females Respond Similarly to Walking With a Standardized, Heavy Load. Mil. Med. 2015, 180, 994–1000. [Google Scholar] [CrossRef]
- Attwells, R.L.; Birrell, S.A.; Hooper, R.H.; Mansfield, N.J. Influence of carrying heavy loads on soldiers’ posture, movements and gait. Ergonomics 2006, 49, 1527–1537. [Google Scholar] [CrossRef]
- Jones, B.H.; Perrotta, D.M.; Canham-Chervak, M.L.; Nee, M.A.; Brundage, J.F. Injuries in the military A review and commentary focused on prevention. Am. J. Prev. Med. 2000, 18, 71–84. [Google Scholar] [CrossRef]
- Arazpour, M.; Bahramian, F.; Aboutorabi, A.; Nourbakhsh, S.T.; Alidousti, A.; Aslani, H. The Effect of Patellofemoral Pain Syndrome on Gait Parameters: A Literature Review. Arch. Bone Jt. Surg. 2016, 4, 298–306. [Google Scholar] [CrossRef]
- Glaviano, N.R.; Bazett-Jones, D.M.; Boling, M.C. Pain severity during functional activities in individuals with patellofemoral pain: A systematic review with meta-analysis. J. Sci. Med. Sport 2022, 25, 399–406. [Google Scholar] [CrossRef]
- Haghighat, F.; Ebrahimi, S.; Rezaie, M.; Shafiee, E.; Shokouhyan, S.M.; Motealleh, A.; Parnianpour, M. Trunk, pelvis, and knee kinematics during running in females with and without patellofemoral pain. Gait Posture 2021, 89, 80–85. [Google Scholar] [CrossRef]
- Powers, C.M.; Heino, J.G.; Rao, S.; Perry, J. The influence of patellofemoral pain on lower limb loading during gait. Clin. Biomech. 1999, 14, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Paoloni, M.; Mangone, M.; Fratocchi, G.; Murgia, M.; Saraceni, V.M.; Santilli, V. Kinematic and kinetic features of normal level walking in patellofemoral pain syndrome: More than a sagittal plane alteration. J. Biomech. 2010, 43, 1794–1798. [Google Scholar] [CrossRef] [PubMed]
- Willson, J.D.; Davis, I.S. Lower extremity mechanics of females with and without patellofemoral pain across activities with progressively greater task demands. Clin. Biomech. 2008, 23, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Salsich, G.B.; Brechter, J.H.; Powers, C.M. Lower extremity kinetics during stair ambulation in patients with and without patellofemoral pain. Clin. Biomech. 2001, 16, 906–912. [Google Scholar] [CrossRef]
- Souza, R.B.; Powers, C.M. Differences in Hip Kinematics, Muscle Strength, and Muscle Activation Between Subjects With and Without Patellofemoral Pain. J. Orthop. Sports Phys. Ther. 2009, 39, 12–19. [Google Scholar] [CrossRef]
- Dierks, T.A.; Manal, K.T.; Hamill, J.; Davis, I. Lower Extremity Kinematics in Runners with Patellofemoral Pain during a Prolonged Run. Med. Sci. Sports Exerc. 2011, 43, 693–700. [Google Scholar] [CrossRef]
- Nakagawa, T.H.; Moriya, E.T.U.; Maciel, C.D.; Serrão, F.V. Trunk, Pelvis, Hip, and Knee Kinematics, Hip Strength, and Gluteal Muscle Activation During a Single-Leg Squat in Males and Females With and Without Patellofemoral Pain Syndrome. J. Orthop. Sports Phys. Ther. 2012, 42, 491–501. [Google Scholar] [CrossRef]
- Bolgla, L.A.; Malone, T.R.; Umberger, B.R.; Uhl, T.L. Hip Strength and Hip and Knee Kinematics During Stair Descent in Females With and Without Patellofemoral Pain Syndrome. J. Orthop. Sports Phys. Ther. 2008, 38, 12–18. [Google Scholar] [CrossRef]
- Almeida, G.P.L.; Carvalho e Silva AP de, M.C.; França, F.J.R.; Magalhães, M.O.; Burke, T.N.; Marques, A.P. Does anterior knee pain severity and function relate to the frontal plane projection angle and trunk and hip strength in women with patellofemoral pain? J. Bodyw. Mov. Ther. 2015, 19, 558–564. [Google Scholar] [CrossRef]
- Petersen, W.; Rembitzki, I.; Liebau, C. Patellofemoral pain in athletes. Open Access J. Sports Med. 2017, 8, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Doberstein, S.T.; Romeyn, R.L.; Reineke, D.M. The Diagnostic Value of the Clarke Sign in Assessing Chondromalacia Patella. J. Athl. Train. 2008, 43, 190–196. [Google Scholar] [CrossRef] [PubMed]
- McGowan, C.P.; Neptune, R.R.; Kram, R. Independent effects of weight and mass on plantar flexor activity during walking: Implications for their contributions to body support and forward propulsion. J. Appl. Physiol. 2008, 105, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.B., III; Õunpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 1990, 8, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Hannigan, J.J.; Osternig, L.R.; Chou, L.-S. Sex-Specific Relationships Between Hip Strength and Hip, Pelvis, and Trunk Kinematics in Healthy Runners. J. Appl. Biomech. 2018, 34, 76–81. [Google Scholar] [CrossRef]
- Brund, R.B.K.; Rasmussen, S.; Nielsen, R.O.; Kersting, U.G.; Laessoe, U.; Voigt, M. The association between eccentric hip abduction strength and hip and knee angular movements in recreational male runners: An explorative study. Scand. J. Med. Sci. Sports 2017, 28, 473–478. [Google Scholar] [CrossRef]
- Ireland, M.L.; Willson, J.D.; Ballantyne, B.T.; Davis, I.M. Hip Strength in Females With and Without Patellofemoral Pain. J. Orthop. Sports Phys. Ther. 2003, 33, 671–676. [Google Scholar] [CrossRef]
- Chow, D.H.-K.; Hin, C.K.-F.; Ou, D.; Lai, A. Carry-over effects of backpack carriage on trunk posture and repositioning ability. Int. J. Ind. Ergon. 2011, 41, 530–535. [Google Scholar] [CrossRef]
- Fick, C.N.; Jiménez-Silva, R.; Sheehan, F.T.; Grant, C. Patellofemoral kinematics in patellofemoral pain syndrome: The influence of demographic factors. J. Biomech. 2021, 130, 110819. [Google Scholar] [CrossRef]
- Powers, C.M.; Bolgla, L.A.; Callaghan, M.J.; Collins, N.; Sheehan, F.T. Patellofemoral Pain: Proximal, Distal, and Local Factors—2nd International Research Retreat, August 31–September 2, 2011, Ghent, Belgium. J. Orthop. Sports Phys. Ther. 2012, 42, A1–A54. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.V.; Sebastião, R.; Fonseca, P.; Morais, S.; Soares, D.; de Sousa, I.; Machado, L.; Sousa, F.; Vaz, M.; Vilas-Boas, J.P. Can increased load carriage affect lower limbs kinematics during military gait? Ergonomics 2022, 65, 1194–1201. [Google Scholar] [CrossRef] [PubMed]
- Rice, H.; Fallowfield, J.; Allsopp, A.; Dixon, S. Influence of a 12.8-km military load carriage activity on lower limb gait mechanics and muscle activity. Ergonomics 2016, 60, 649–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Weight: (With vs. Without) | Group: (PFPS vs. Control) | Side: (Left vs. Right) | |
---|---|---|---|
weight: (with vs. without | ✓ | ✓ | |
group: (PFPS vs. control) | ✓ | ✓ | |
side: (left vs. right) | ✓ | ✓ |
PFPS Group (N = 10) | Control Group (N = 13) | p Value (between Load vs. No Load) (Partial Eta Square η2p) | p Value (between Research Groups) (Partial Eta Square η2p) | p Value (Interaction Group X Load (Partial Eta Square η2p) | |||
---|---|---|---|---|---|---|---|
Without Load X (±SD) | With Load X (±SD) | Without Load X (±SD) | With Load (±SD) | ||||
Hip adduction | 4.51 (2.10) | 4.64 (3.07) | 2.59 (2.56) | 4.92 (2.30) | 0.017 * (0.244) | 0.399 (0.034) | 0.029 * (0.207) |
Hip internal rotation | 7.53( 8.23) | 9.80 (9.00) | 5.21 (4.22) | 6.88 (4.76) | 0.018 * (0.238) | 0.455 (0.027) | 0.718 (0.006) |
Knee flexion | 26.49 (4.35) | 29.12 (5.97) | 24.20 (4.94) | 26.92 (4.28) | 0.001 * (0.411) | 0.260 (0.060) | 0.945 (0.000) |
Knee valgus | 8.51 (6.51) | 10.57 (3.97) | 7.68 (2.67) | 9.03 (2.40) | 0.003 * (0.344) | 0.469 (0.025) | 0.498 (0.022) |
Knee internal rotation | 11.82 (7.84) | 13.75 (5.79) | 10.44 (5.93) | 11.46 (4.52) | 0.004 * (0.336) | 0.541 (0.018) | 0.180 (0.084) |
Foot pronation | 1.57 (9.16) | 3.35 (9.62) | 0.56 (7.78) | 2.4 (6.72) | 0.028 * (0.210) | 0.776 (0.004) | 0.971 (0.009) |
PFPS Group (N = 10) | Control Group (N = 13) | p Value (between Load vs. No Load) (Partial Eta Square η2p) | p Value (between Research Groups) (Partial Eta Square η2p) | p Value (Interaction Group X Load) (Partial Eta Square η2p) | |||
---|---|---|---|---|---|---|---|
Without Load X (±SD) | With Load X (±SD) | Without Load X (±SD) | With Load X (±SD) | ||||
Hip adduction-abduction | 11.20 (2.13) | 13.21 (2.24) | 11.98 (1.72) | 16.99 (4.38) | <0.001 * (0.600) | 0.041 * (0.185) | 0.025 * (0.217) |
Hip internal–external rotation | 13.61 (4.77) | 14.00 (3.21) | 11.85 (4.22) | 13.05 (1.79) | 0.252 (0.062) | 0.331 (0.045) | 0.561 (0.016) |
Knee flexion–extension | 29.65 (5.00) | 29.95 (5.24) | 28.30 (6.79) | 29.21 (5.54) | 0.481 (0.024) | 0.649 (0.010) | 0.724 (0.006) |
Knee valgus–varus | 6.96 (5.38) | 7.21 (3.55) | 4.71 (2.12) | 5.82 (1.67) | 0.202 (0.076) | 0.174 (0.086) | 0.421 (0.031) |
Knee internal–external rotation | 15.08 (4.75) | 16.15 (3.95) | 13.57 (4.36) | 13.06 (3.36) | 0.572 (0.015) | 0.180 (0.084) | 0.123 (0.110) |
Foot pronation–supination | 21.70 (7.74) | 24.14 (6.76) | 18.06 (6.18) | 22.52 (4.77) | 0.001 * (0.412) | 0.369 (0.039) | 0.398 (0.034) |
PFPS Group (N = 10) | Control Group (N = 13) | p Value (between Load vs. No Load) (Partial Eta Square η2p) | p value (between Load vs. No Load) (Partial Eta Square η2p) | p Value (Interaction Group X Load) (Partial Eta Square η2p) | |||
---|---|---|---|---|---|---|---|
Without Load X (±SD) | With Load X (±SD) | Without Load X (±SD) | With Load X (±SD) | ||||
Hip adduction | 0.85 (0.28) | 1.01 (0.34) | 0.75 (0.28) | 1.18 (0.51) | 0.005 * (0.315) | 0.735 (0.006) | 0.155 (0.094) |
Hip internal rotation | 0.17 (0.05) | 0.21 (0.77) | 0.16 (0.05) | 0.21 (0.10) | 0.001 * (0.433) | 0.970 (0.000) | 0.791 (0.003) |
Knee flexion | 0.89 (0.35) | 0.99 (0.48) | 0.75 (0.39) | 0.86 (0.48) | 0.089 (0.132) | 0.451 (0.027) | 0.857 (0.002) |
Knee valgus | 0.76 (0.29) | 1.00 (0.50) | 0.66 (0.32) | 1.08 (0.64) | 0.002 * (0.368) | 0.965 (0.000) | 0.356 (0.041) |
Knee internal rotation | 0.15 (0.06) | 0.18 (0.08) | 0.16 (0.06) | 0.24 (0.12) | 0.006 * (0.310) | 0.234 (0.067) | 0.197 (0.078) |
Foot pronation | 0.07 (0.06) | 0.10 (0.09) | 0.04 (0.03) | 0.05 (0.05) | 0.119 (0.112) | 0.115 (0.114) | 0.423 (0.031) |
PFPS Group (N = 10) | Control Group (N = 13) | p Value (between Load vs. No Load) (Partial Eta Square η2p) | p Value (between Load vs. No Load) (Partial ETA Square η2p) | p Value (Interaction Group X load) (Partial Eta Square η2p) | |||
---|---|---|---|---|---|---|---|
Without Load (X ± SD) | With Load (X ± SD) | Without Load (X ± SD) | With Load (X ± SD) | ||||
Stride time (sec) | 0.88 (0.05) | 0.89 (0.05) | 0.88 (0.04) | 0.88 (0.06) | 0.173 (0.091) | 0.763 (0.005) | 0.772 (0.004) |
Stride length (m) | 1.67 (0.07) | 1.60 (0.07) | 1.70 (0.10) | 1.64 (0.11) | 0.001 * (0.450) | 0.780 (0.040) | 0.780 (0.004) |
Single support (sec) | 0.37 (0.02) | 0.36 (0.02) | 0.37 (0.02) | 0.36 (0.02) | 0.001 * (0.413) | 0.716 (0.007) | 0.674 (0.009) |
Double support (sec) | 0.138 (0.02) | 0.184 (0.03) | 0.133 (0.19) | 0.175 (0.03) | <0.001 * (0.767) | 0.514 (0.022) | 0.696 (0.008) |
Walking speed (m/sec) | 1.87 (0.15) | 1.76 (0.16) | 1.90 (0.79) | 1.82 (0.18) | 0.001 * (0.407) | 0.488 (0.024) | 0.602 (0.014) |
Cadence (steps per min) | 136.29 (9.09) | 134.00 (7.96) | 136.78 (7.61) | 135.95 (8.91) | 0.196 (0.082) | 0.769 (0.004) | 0.671 (0.009) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dar, G.; Saposhnik, A.; Finestone, A.S.; Ayalon, M. The Effect of Load Carrying on Gait Kinetic and Kinematic Variables in Soldiers with Patellofemoral Pain Syndrome. Appl. Sci. 2023, 13, 2264. https://doi.org/10.3390/app13042264
Dar G, Saposhnik A, Finestone AS, Ayalon M. The Effect of Load Carrying on Gait Kinetic and Kinematic Variables in Soldiers with Patellofemoral Pain Syndrome. Applied Sciences. 2023; 13(4):2264. https://doi.org/10.3390/app13042264
Chicago/Turabian StyleDar, Gali, Aviv Saposhnik, Aharon S. Finestone, and Moshe Ayalon. 2023. "The Effect of Load Carrying on Gait Kinetic and Kinematic Variables in Soldiers with Patellofemoral Pain Syndrome" Applied Sciences 13, no. 4: 2264. https://doi.org/10.3390/app13042264
APA StyleDar, G., Saposhnik, A., Finestone, A. S., & Ayalon, M. (2023). The Effect of Load Carrying on Gait Kinetic and Kinematic Variables in Soldiers with Patellofemoral Pain Syndrome. Applied Sciences, 13(4), 2264. https://doi.org/10.3390/app13042264