Modal Identification of Train Passenger Seats Based on Dynamic Tests and Output-Only Techniques
Abstract
:1. Introduction
- −
- Development of an experimental test setup on a real train environment. This way, the influence of the flexible seat base, instead of the currently rigid base used in laboratory experiments, as well as the influence of the carbody/bogies resonance movements, are considered on the seat dynamic performance. In addition, this dedicated experimental setup can clearly distinguish the seat frame’s structural movements from the foam’s local vibrations.
- −
- Accurate characterisation of modal parameters of the seat structural frame and surface foam for different types of seats belonging to Alfa Pendular and Intercity trains, including standard and comfort seats.
- −
- Train seat modal parameters validation based on the application of two distinct output-only techniques, one based on transmissibility functions, which is used by most of the authors in the bibliography, and the other based on the Enhanced Frequency Domain Decomposition (EFDD) method. The latter allows for visualising the modal configurations, which is a novelty in relation to the previous research works.
2. Modal Identification Methodologies
2.1. Transmissibility Function
2.2. Enhanced Frequency Domain Decomposition (EFDD)
3. Case Study: Alfa Pendular
3.1. Dynamic Tests
3.2. Results
3.2.1. Transmissibility Curves
3.2.2. EFDD Method
4. Case Study: Intercity Train
4.1. Dynamic Tests
4.2. Results
4.2.1. Transmissibility Curves
4.2.2. EFDD Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Consulting, M. Tractebel Engineering. In European High Speed Rail—An Easy Way to Connect; Tractebel Engineering: Brussels, Belgium, 2009; pp. 1–213. [Google Scholar]
- Román, C.; Espino, R.; Martín, J.C. Competition of high-speed train with air transport: The case of Madrid-Barcelona. J. Air Transp. Manag. 2007, 13, 277–284. [Google Scholar] [CrossRef]
- European Federation for Transport and Environment. Air2Rail Reducing CO2 from Intra-European Aviation by a Modal Shift from Air to Rail. Delft. 2020. Available online: https://www.transportenvironment.org/wp-content/uploads/2021/07/2020_03_Air2Rail_Koios_strategy_rev.pdf (accessed on 12 December 2022).
- Eurostat Statistics Explained. Railway Passenger Transport Statistics—Quarterly and Annual Data; Eurostat Statistics Explained: Luxembourg, 2021. [Google Scholar]
- Office of Rail and Road. Passenger Rail Usage 2020–2021 Quarter 3; Office of Rail and Road: London, UK, 2021.
- Kim, Y.G.; Kwon, H.B.; Kim, S.W.; Park, C.K.; Park, T.W. Correlation of ride comfort evaluation methods for railway vehicles. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2002, 217, 73–88. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, B.K.; Thompson, C. A comparison study of ride comfort indices between Sperling’s method and EN 12299. Int. J. Rail Transp. 2019, 7, 1–18. [Google Scholar] [CrossRef]
- EN 12299; Railway Applications—Ride Comfort for Passengers—Measurement and Evaluation. European Committee for Standardization: Brussels, Belgium, 2009.
- Wibowo, R.K.K.; Soekarno, S.; Puspitasari, I. Analysis of Train Passenger Seat Using Ergonomic Function Deployment Method. Int. J. Transp. Veh. Eng. 2017, 11, 1747–1751. [Google Scholar] [CrossRef]
- Bosso, N.; Gugliotta, A.; Zampieri, N. Design and simulation of a railway vehicle for the transport of people with reduced mobility. Shock. Vib. 2018, 2018, 9207639. [Google Scholar] [CrossRef]
- Hostens, I. Analysis of Seating during Low Frequency Vibration Exposure. Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2004. [Google Scholar]
- Park, S.J.; Subramaniyam, M. Evaluating Methods of Vibration Exposure and Ride Comfort in Car. J. Ergon. Soc. Korea 2013, 32, 381–387. [Google Scholar] [CrossRef]
- Ebe, K.; Griffing, M. Factors affecting seat cushion comfort. Ergonomics 2001, 44, 901–921. [Google Scholar] [CrossRef]
- Montenegro, P.A.; Ribeiro, D.; Ortega, M.; Millanes, F.; Goicolea, J.M.; Zhai, W.; Calçada, R. Impact of the train-track-bridge system characteristics in the runnability of high-speed trains against crosswinds—Part II: Riding comfort. J. Wind. Eng. Ind. Aerodyn. 2022, 224, 104987. [Google Scholar] [CrossRef]
- UIC 513 (E). Guidelines for Evaluating Passenger Comfort in Relation to Vibration in Railway Vehicles; International Union of Railways (UIC): Paris, France, 1994. [Google Scholar]
- ISO 2631; Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration. International Standard Organization: Geneva, Switzerland, 2001.
- Schust, M.; Blüthner, R.; Seidel, H. Examination of perceptions (intensity, seat comfort, effort) and reaction times (brake and accelerator) during low-frequency vibration in x- or y-direction and biaxial (xy-) vibration of driver seats with activated and deactivated suspension. J. Sound Vib. 2006, 298, 606–626. [Google Scholar] [CrossRef]
- Hong, K.-T.; Hwang, S.-H.; Hong, K.-S. Automotive Ride-Comfort Improvement with an Air Cushion Seat. In Proceedings of the SICE Annual Conference in Fukui, Fukui, Japan, 4–6 August 2003; Fukui University: Fukui, Japan, 2003. [Google Scholar]
- Bonin, G.; Cantisani, G.; Loprencipe, G.; Sbrolli, M. Ride quality evaluation: 8 D.O.F. vehicle model calibration. In Proceedings of the 4th International SIIV Congress, Palermo, Italy, 12–14 September 2007. [Google Scholar]
- van Niekerk, J.L.; Pielemeier, W.J.; Greenberg, J.A. The use of seat effective amplitude transmissibility (SEAT) values to predict dynamic seat comfort. J. Sound Vib. 2003, 260, 867–888. [Google Scholar] [CrossRef]
- Maier, J.; Zierke, O.; Hoermann, H.J.; Goerke, P. Effects of personal control for thermal comfort in long-distance trains. Energy Build. 2021, 247, 111125. [Google Scholar] [CrossRef]
- Năstac, S.; Picu, M. Evaluating Methods of Whole-Body-Vibration Exposure in Trains. In The Annals of “Dunarea de Jos”; University of Galați: Galați, Romania, 2010. [Google Scholar]
- Patelli, G.; Griffin, M.J. Effects of seating on the discomfort caused by mechanical shocks: Measurement and prediction of SEAT values. Appl. Ergon. 2019, 74, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.; Piersol, A. Harris’ Shock and Vibration Handbook; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Chaffin, D.; Anderson, G.; Martin, B. Occupational Biomechanics; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Bruel & Kjaer. Primer: Human Vibration, Booklet; K. Larsen & Son: Naerum, Denmark, 1989. [Google Scholar]
- Griffin, M.J. Handbook of Human Vibration; Academic Press: London, UK, 1990. [Google Scholar] [CrossRef]
- Tufano, S.; Griffin, M. Nonlinearity in the vertical transmissibility of seating: The role of the human body apparent mass and seat dynamic stiffness. Veh. Syst. Dyn. 2013, 51, 122–138. [Google Scholar] [CrossRef]
- White, S.W.; Kim, S.K.; Bajaj, A.K.; Davies, P.; Showers, D.K.; Liedtke, P.E. Experimental techniques and identification of nonlinear and viscoelastic properties of flexible polyurethane foam. Nonlinear. Dyn. 2000, 22, 281–313. [Google Scholar] [CrossRef]
- Wei, L.; Griffin, M. The prediction of seat transmissibility from measures of seat impedance. J. Sound Vib. 1998, 214, 121–137. [Google Scholar] [CrossRef]
- Varterasian, J.; Thompson, R. The dynamic characteristics of automobile seats with human occupants. Soc. Automot. Eng. SAE 1977, 1173–1182. [Google Scholar] [CrossRef]
- Toward, M.G.R.; Griffin, M.J. The transmission of vertical vibration through seats: Influence of the characteristics of the human body. J. Sound Vib. 2011, 330, 6526–6543. [Google Scholar] [CrossRef]
- Gong, W.; Griffin, M.J. Measuring, evaluating and assessing the transmission of vibration through the seats of railway vehicles. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2018, 232, 384–395. [Google Scholar] [CrossRef]
- Basri, B.; Griffin, M.J. The application of SEAT values for predicting how compliant seats with backrests influence vibration discomfort. Appl. Ergon. 2014, 45, 1461–1474. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Qiu, Y.; Griffin, M. Transmission of vertical vibration through a seat: Effect of thickness of foam cushions at the seat pan and the backrest. Int. J. Ind. Ergon. 2015, 48, 36–45. [Google Scholar] [CrossRef]
- Gharehbaghi, V.R.; Noroozinejad Farsangi, E.; Noori, M.; Yang, T.Y.; Li, S.; Nguyen, A.; Málaga-Chuquitaype, C.; Gardoni, P.; Mirjalili, S. A Critical Review on Structural Health Monitoring: Definitions, Methods, and Perspectives. Arch. Comput. Methods Eng. 2022, 29, 2209–2235. [Google Scholar] [CrossRef]
- Ghannadi, P.; Kourehli, S.S.; Mirjalili, S. The application of PSO in structural damage detection: An analysis of the previously released publications (2005–2020). Frat. Integrità Strutt. 2022, 16, 460–489. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Tan, X. Review on vibration-based structural health monitoring techniques and technical codes. Symmetry 2021, 13, 1998. [Google Scholar] [CrossRef]
- Dziedziech, K.; Staszewski, W.J.; Mendrok, K.; Basu, B. Wavelet-Based Transmissibility for Structural Damage Detection. Materials 2022, 15, 2722. [Google Scholar] [CrossRef]
- Kolich, M.; Essenmacher, S.; McEvoy, J. Automotive seating: The effect of foam physical properties on occupied vertical vibration transmissibility. J. Sound Vib. 2005, 281, 409–416. [Google Scholar] [CrossRef]
- Dong, R.; Welcome, D.; McDowell, T.; Wu, J. Theoretical relationship between vibration transmissibility and driving-point response functions of the human body. J. Sound Vib. 2013, 332, 6193–6202. [Google Scholar] [CrossRef]
- Pozharskiy, D.; Zhang, Y.; Williams, M.O.; McFarland, D.M.; Kevrekidis, P.G.; Vakakis, A.F.; Kevrekidis, I.G. Nonlinear resonances and antiresonances of a forced sonic vacuum. Phys. Rev. E 2015, 92, 063203. [Google Scholar] [CrossRef]
- Shi, Y.; Li, S. An inverse modification method for assigning antiresonant frequencies. Appl. Acoust. 2020, 170, 107524. [Google Scholar] [CrossRef]
- Brincker, R.; Zhang, L.; Andersen, P. Modal Identification from Ambient Responses using Frequency Domain Decomposition. In Proceedings of the 18th International Modal Analysis Conference (IMAC), San Antonio, TX, USA, 7–10 February 2000; pp. 625–630. [Google Scholar]
- Allemang, R.; Brown, D. A Correlation Coefficient for Modal Vector Analysis. In Proceedings of the 1st International Modal Analysis Conference (IMAC I), Orlando, FL, USA, 8–10 November 1982; pp. 110–116. [Google Scholar]
- Magalhães, F. Identificação Modal Estocástica Para Validação Experimental de Modelos Numéricos [Stochastic Modal Identification for Experimental Validation of Numerical Models]. Ph.D. Thesis, University of Porto, Porto, Portugal, 2004. (In Portuguese). [Google Scholar]
- Brincker, R.; Ventura, C.E.; Andersen, P. Damping estimation by frequency domain decomposition. In Proceedings of the International Modal Analysis Conference—IMAC 2001, Kissimmee, FL, USA, 5–8 February 2001; pp. 698–703. [Google Scholar]
- Allemang, R.J. The modal assurance criterion–twenty years of use and abuse. Sound Vib. 2003, 37, 14–23. [Google Scholar]
- Ghannadi, P.; Kourehli, S.S. Efficiency of the slime mold algorithm for damage detection of large-scale structures. Struct. Des. Tall Spec. Build. 2022, 31, e1967. [Google Scholar] [CrossRef]
- Pastor, M.; Binda, M.; Harčarik, T. Modal assurance criterion. Procedia Eng. 2012, 48, 543–548. [Google Scholar] [CrossRef]
- Ribeiro, D.; Calçada, R.; Brehm, M.; Zabel, V. Train–Track–Bridge Dynamic Interaction on a Bowstring-Arch Railway Bridge: Advanced Modeling and Experimental Validation. Sensors 2022, 23, 171. [Google Scholar] [CrossRef] [PubMed]
- Meixedo, A.; Ribeiro, D.; Calçada, R.; Delgado, R. Global and local dynamic effects on a railway viaduct with precast deck. In Proceedings of the Civil-Comp Proceedings 2014, Naples, Italy, 2–5 September 2014; p. 104. [Google Scholar]
- Comboios de Portugal. CP—Comboio Elétrico Pendular, Séries 4000; Comboios de Portugal: Lisbon, Portugal, 1998. [Google Scholar]
- Comboios de Portugal. CP—Comboio Elétrico Pendular, Séries 4000; Comboios de Portugal: Lisbon, Portugal, 2017. [Google Scholar]
- Ribeiro, D.; Calçada, R.; Delgado, R.; Brehm, M.; Zabel, V. Finite-element model calibration of a railway vehicle based on experimental modal parameters. Veh. Syst. Dyn. 2013, 51, 821–856. [Google Scholar] [CrossRef]
- ARTeMIS. ARTeMIS Extractor Pro—Academic License, User’s Manual, SVS 2009; ARTeMIS: Aalborg, Denmark, 2009.
Subject | Gender | Age (Years) | Weight (kg) | Height (m) |
---|---|---|---|---|
S1 | Female | 25 | 58 | 1.70 |
S2 | Male | 26 | 80 | 1.87 |
S3 | Male | 39 | 115 | 1.85 |
Subject | Comfort | Standard | ||
---|---|---|---|---|
Resonance (Hz) | Antiresonance (Hz) | Resonance (Hz) | Antiresonance (Hz) | |
S1 | 0.20 | 0.59 | 0.20 | 1.37 |
1.37 | 4.49 | 1.76 | 3.91 | |
2.54 | 2.34 | |||
4.88 | 4.69 | |||
S2 | 0.20 | 0.39 | 0.20 | 1.17 |
1.56 | 4.69 | 1.76 | 3.52 | |
2.54 | 2.34 | |||
4.88 | 4.30 | |||
S3 | 0.20 | 0.39 | 0.20 | 0.78 |
1.37 | 4.30 | 1.76 | 4.30 | |
2.54 | 2.73 | |||
4.69 | 4.69 |
Subject | Comfort | Standard | ||
---|---|---|---|---|
Resonance (Hz) | Antiresonance (Hz) | Resonance (Hz) | Antiresonance (Hz) | |
S1 | 0.59 | 1.37 | 0.20 | 0.59 |
4.30 | 0.78 | 2.54 | ||
4.88 | ||||
S2 | 0.20 | 1.37 | 0.20 | 1.17 |
4.49 | 1.56 | 2.93 | ||
4.88 | ||||
S3 | 0.20 | 1.95 | 0.20 | 0.59 |
4.69 | 0.78 | 2.34 | ||
5.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, P.; Ribeiro, D.; Mendes, J.; Seabra, E. Modal Identification of Train Passenger Seats Based on Dynamic Tests and Output-Only Techniques. Appl. Sci. 2023, 13, 2277. https://doi.org/10.3390/app13042277
Silva P, Ribeiro D, Mendes J, Seabra E. Modal Identification of Train Passenger Seats Based on Dynamic Tests and Output-Only Techniques. Applied Sciences. 2023; 13(4):2277. https://doi.org/10.3390/app13042277
Chicago/Turabian StyleSilva, Patricia, Diogo Ribeiro, Joaquim Mendes, and Eurico Seabra. 2023. "Modal Identification of Train Passenger Seats Based on Dynamic Tests and Output-Only Techniques" Applied Sciences 13, no. 4: 2277. https://doi.org/10.3390/app13042277
APA StyleSilva, P., Ribeiro, D., Mendes, J., & Seabra, E. (2023). Modal Identification of Train Passenger Seats Based on Dynamic Tests and Output-Only Techniques. Applied Sciences, 13(4), 2277. https://doi.org/10.3390/app13042277