COVID-19 Detection Model with Acoustic Features from Cough Sound and Its Application
Abstract
:1. Introduction
2. Related Work
2.1. Cambridge
2.2. Coswara
2.3. COUGHVID
3. Proposed Method
3.1. Data
- The cough sound is quieter than the noise.
- The recording quality is too poor.
- Background noise (conversation, road noise, music, TV/radio, etc.) is mixed with the cough sound.
- It is difficult to recognize the cough sound.
3.2. Preprocessing
3.3. Feature Set
3.3.1. Audio Feature Vector
3.3.2. Bhattacharyya Distance
3.4. Model
4. Experiment
4.1. Evaluation Index
4.2. Results
5. COVID-19 Detecting Application
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
AI | Artificial intelligence |
ANN | Artificial neural network |
ANOVA | Analysis of variance |
AUC | Area under the ROC curve |
CT | Computed tomography |
DNN | Deep neural network |
FN | False negative |
FP | False positive |
IP | Internet protocol |
KNN | K-Nearest neighbors |
MFCC | Mel frequency cepstral coefficients |
PCM | Pulse code modulation |
PCR | Polymerase chain reaction |
RMS | Root mean square |
RNN | Recurrent neural network |
ROC | Receiver operating characteristic |
RT-PCR | Reverse transcription polymerase chain reaction |
SVM | Support vector machine |
TCP | Transmission control protocol |
TN | True negative |
TP | True positive |
References
- IHME COVID-19 Forecasting Team. Modeling COVID-19 scenarios for the United States. Nat. Med. 2021, 27, 94–105. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, Y.; Guo, L.; Chen, Y.Q. Qualitative and quantitative analysis of the COVID-19 pandemic by a two-side fractional-order compartmental model. ISA Trans. 2022, 124, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Baleanu, D.; Mohammadi, H.; Rezapour, S. A fractional differential equation model for the COVID-19 transmission by using the Caputo–Fabrizio derivative. Adv. Differ. Equ. 2020, 299, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Tahamtan, A.; Ardebili, A. Real-time RT-PCR in COVID-19 detection: Issues affecting the results. Expert Rev. Mol. Diagn. 2020, 20, 453–454. [Google Scholar] [CrossRef]
- Luz, E.; Silva, P.; Silva, R.; Silva, L.; Guimarães, J.; Miozzo, G.; Moreira, G.; Menotti, D. Towards an effective and efficient deep learning model for COVID-19 patterns detection in X-ray images. Res. Biomed. Eng. 2022, 38, 149–162. [Google Scholar] [CrossRef]
- Alshazly, H.; Linse, C.; Barth, E.; Martinetz, T. Explainable COVID-19 detection using chest CT scans and deep learning. Sensors 2021, 21, 455. [Google Scholar] [CrossRef] [PubMed]
- Sakr, R.; Ghsoub, C.; Rbeiz, C.; Lattouf, V.; Riachy, R.; Haddad, C.; Zoghbi, M. COVID-19 detection by dogs: From physiology to field application—A review article. Postgrad. Med. J. 2022, 98, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Quer, G.; Radin, J.M.; Gadaleta, M.; Baca-Motes, K.; Ariniello, L.; Ramos, E.; Kheterpal, V.; Topol, E.J.; Steinhubl, S.R. Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat. Med. 2021, 27, 73–77. [Google Scholar] [CrossRef]
- Gorji, F.; Shafiekhani, S.; Namdar, P.; Abdollahzade, S.; Rafiei, S. Machine learning-based COVID-19 diagnosis by demographic characteristics and clinical data. Adv. Respir. Med. 2022, 90, 171–183. [Google Scholar] [CrossRef]
- Agbley, B.L.Y.; Li, J.; Haq, A.; Cobbinah, B.; Kulevome, D.; Agbefu, P.A.; Eleeza, B. Wavelet-based cough signal decomposition for multimodal classification. In Proceedings of the 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 18–20 December 2020; IEEE: Piscataway, NJ, USA, 2021; pp. 5–9. [Google Scholar] [CrossRef]
- Laguarta, J.; Hueto, F.; Subirana, B. COVID-19 artificial intelligence diagnosis using only cough recordings. IEEE Open J. Eng. Med. Biol. 2020, 1, 275–281. [Google Scholar] [CrossRef]
- Coppock, H.; Gaskell, A.; Tzirakis, P.; Baird, A.; Jones, L.; Schuller, B. End-to-end convolutional neural network enables COVID-19 detection from breath and cough audio: A pilot study. BMJ Innov. 2021, 7, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Chetupalli, S.R.; Krishnan, P.; Sharma, N.; Muguli, A.; Kumar, R.; Nanda, V.; Pinto, L.M.; Ghosh, P.K.; Ganapathy, S. Multi-modal point-of-care diagnostics for COVID-19 based on acoustics and symptoms. arXiv 2021, arXiv:2106.00639. [Google Scholar] [CrossRef]
- Mohammed, E.A.; Keyhani, M.; Sanati-Nezhad, A.; Hejazi, S.H.; Far, B.H. An ensemble learning approach to digital corona virus preliminary screening from cough sounds. Sci. Rep. 2021, 11, 15404. [Google Scholar] [CrossRef] [PubMed]
- Tris Atmaja, B.; Sasou, A. Cross-dataset COVID-19 Transfer Learning with Cough Detection, Cough Segmentation, and Data Augmentation. arXiv 2022, arXiv:2210.05843. [Google Scholar] [CrossRef]
- Mahanta, S.K.; Kaushik, D.; Van Truong, H.; Jain, S.; Guha, K. COVID-19 diagnosis from cough acoustics using convnets and data augmentation. In Proceedings of the 2021 First International Conference on Advances in Computing and Future Communication Technologies (ICACFCT), Meerut, India, 16–17 December 2021; IEEE: Piscataway, NJ, USA, 2022; pp. 33–38. [Google Scholar] [CrossRef]
- Sunitha, G.; Arunachalam, R.; Abd-Elnaby, M.; Eid, M.M.; Rashed, A.N.Z. A comparative analysis of deep neural network architectures for the dynamic diagnosis of COVID-19 based on acoustic cough features. Int. J. Imaging Syst. Technol. 2022, 32, 1433–1446. [Google Scholar] [CrossRef]
- Sabet, M.; Ramezani, A.; Ghasemi, S.M. COVID-19 Detection in Cough Audio Dataset Using Deep Learning Model. In Proceedings of the 2022 8th International Conference on Control, Instrumentation and Automation (ICCIA), Tehran, Iran, 2–3 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Arif, A.; Alanazi, E.; Zeb, A.; Qureshi, W.S. Analysis of rule-based and shallow statistical models for COVID-19 cough detection for a preliminary diagnosis. In Proceedings of the 2022 13th Asian Control Conference (ASCC), Jeju, Republic of Korea, 4–7 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 465–469. [Google Scholar] [CrossRef]
- Brown, C.; Chauhan, J.; Grammenos, A.; Han, J.; Hasthanasombat, A.; Spathis, D.; Xia, T.; Cicuta, P.; Mascolo, C. Exploring automatic diagnosis of COVID-19 from crowdsourced respiratory sound data. arXiv 2020, arXiv:2006.05919. [Google Scholar] [CrossRef]
- Feng, K.; He, F.; Steinmann, J.; Demirkiran, I. Deep-learning based approach to identify COVID-19. In Proceedings of the Southeast Conference 2021, Atlanta, GA, USA, 10–13 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Fakhry, A.; Jiang, X.; Xiao, J.; Chaudhari, G.; Han, A. A multi-branch deep learning network for automated detection of COVID-19. In Proceedings of the 22nd Annual Conference of the International Speech Communication Association 2021, Brno, Czechi, 30 August–3 September 2021; pp. 3641–3645. [Google Scholar] [CrossRef]
- Son, M.J.; Lee, S.P. COVID-19 Diagnosis from Crowdsourced Cough Sound Data. Appl. Sci. 2022, 12, 1795. [Google Scholar] [CrossRef]
- Muda, L.; Begam, M.; Elamvazuthi, I. Voice recognition algorithms using mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques. arXiv 2010, arXiv:1003.4083. [Google Scholar] [CrossRef]
- Sharma, N.; Krishnan, P.; Kumar, R.; Ramoji, S.; Chetupalli, S.R.; Ghosh, P.K.; Ganapathy, S. Coswara--a database of breathing, cough, and voice sounds for COVID-19 diagnosis. arXiv 2020, arXiv:2005.10548. [Google Scholar] [CrossRef]
- Chaudhari, G.; Jiang, X.; Fakhry, A.; Han, A.; Xiao, J.; Shen, S.; Khanzada, A. Virufy: Global applicability of crowdsourced and clinical datasets for AI detection of COVID-19 from cough. arXiv 2020, arXiv:2011.13320. [Google Scholar] [CrossRef]
- Orlandic, L.; Teijeiro, T.; Atienza, D. The COUGHVID crowdsourcing dataset, a corpus for the study of large-scale cough analysis algorithms. Sci. Data 2021, 8, 156. [Google Scholar] [CrossRef] [PubMed]
- Kailath, T. The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 1967, 15, 52–60. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Dan, E. Github. Available online: https://github.com/tensorflow/models/tree/master/research/audioset/vggish (accessed on 9 June 2021).
- Librosa. Available online: https://librosa.org (accessed on 13 December 2022).
- Android Developers. Available online: https://developer.android.com/reference/android/media/AudioRecord (accessed on 13 July 2022).
- Android Developers. Available online: https://developer.android.com/reference/android/media/AudioTrack (accessed on 13 July 2022).
Cambridge | Coswara | COUGHVID | Total | |
---|---|---|---|---|
COVID-19 | 299 | 1336 | 441 | 2076 |
healthy | 499 | 400 | 201 | 1100 |
symptomatic | 295 | 428 | 301 | 1024 |
Cambridge | Coswara | COUGHVID | Total | |
---|---|---|---|---|
COVID-19 | 247 | 656 | 203 | 1106 |
healthy | 299 | 123 | 108 | 530 |
symptomatic | 179 | 92 | 142 | 413 |
Cambridge | Coswara | COUGHVID | Total | |
---|---|---|---|---|
COVID-19 | 687 | 957 | 483 | 2127 |
healthy | 627 | 285 | 255 | 1167 |
symptomatic | 622 | 155 | 346 | 1123 |
Feature | Bhattacharyya Distance |
---|---|
MFCC | 0.207171 |
Δ2-MFCC | 0.149195 |
Δ-MFCC | 0.099828 |
Spectral Contrast | 0.090616 |
Chroma | 0.063358 |
Spectral Flatness | 0.057523 |
Spectral Bandwidth | 0.046912 |
Spectral Roll-Off | 0.032971 |
RMS Energy | 0.018301 |
Spectral Centroid | 0.016368 |
Zero-Crossing Rate | 0.002629 |
Onset | 0.002387 |
Database | Feature Set | Model | Performance | |||
---|---|---|---|---|---|---|
Accuracy | Sensitivity | Specificity | ||||
(a) | COUGHVID | MFCC | LSTM | 0.62 | 0.60 | 0.62 |
(b) | COUGHVID | Spectrogram | ResNet-50 | 0.88 | 0.90 | 0.88 |
(c) | Cambridge + Coswara + COUGHVID | MFCC | LSTM | 0.62 | 0.58 | 0.67 |
(d) | Cambridge + Coswara + COUGHVID | Spectrogram | ResNet-50 | 0.91 | 0.87 | 0.93 |
(e) | COUGHVID | [22] | ResNet-50 + DNN | 0.89 | 0.93 | 0.86 |
(f) | COUGHVID | [23] | ResNet-50 + DNN | 0.94 | 0.93 | 0.94 |
(g) | Cambridge + Coswara + COUGHVID | [22] | ResNet-50 + DNN | 0.93 | 0.93 | 0.93 |
(h) | Cambridge + Coswara + COUGHVID | [23] | ResNet-50 + DNN | 0.92 | 0.90 | 0.94 |
(i) | Cambridge + Coswara + COUGHVID | Proposed feature set + spectrogram | ResNet-50 + DNN | 0.96 | 0.95 | 0.96 |
Degrees of Freedom | Sum of Squares | Mean Square Error | F Value | p-Value | |
---|---|---|---|---|---|
group | 4 | 0.006493 | 0.001623 | 4.775 | 0.0205 |
Residuals | 10 | 0.003400 | 0.000340 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Baek, J.-Y.; Lee, S.-P. COVID-19 Detection Model with Acoustic Features from Cough Sound and Its Application. Appl. Sci. 2023, 13, 2378. https://doi.org/10.3390/app13042378
Kim S, Baek J-Y, Lee S-P. COVID-19 Detection Model with Acoustic Features from Cough Sound and Its Application. Applied Sciences. 2023; 13(4):2378. https://doi.org/10.3390/app13042378
Chicago/Turabian StyleKim, Sera, Ji-Young Baek, and Seok-Pil Lee. 2023. "COVID-19 Detection Model with Acoustic Features from Cough Sound and Its Application" Applied Sciences 13, no. 4: 2378. https://doi.org/10.3390/app13042378
APA StyleKim, S., Baek, J. -Y., & Lee, S. -P. (2023). COVID-19 Detection Model with Acoustic Features from Cough Sound and Its Application. Applied Sciences, 13(4), 2378. https://doi.org/10.3390/app13042378