The Synergistic Effect of Simultaneous Ultrasound Heating and Disintegration on the Technological Efficiency and Energetic Balance of Anaerobic Digestion of High-Load Slaughter Poultry Sewage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concept of Research Works
2.2. Materials
2.3. Laboratory Equipment
2.4. Analytical Methods
2.5. Computation Methods
- YCH4out—methane yield [dm3/g COD];
- ECH4—methane energetic value (Wh/cm3); and
- MCODin—COD mass fed to the respirometer (gCOD).
- Euin—unit specific energy input (Wh/g COD);
- Es—the specific energy input [Wh]; and
- MCODin—COD mass (g COD).
- EtotinR—unit specific energy input to respirometer (Wh);
- Euin—unit specific energy input (Wh/g COD); and
- MCODinR—COD mass fed to the respirometer (g COD).
2.6. Statistical Analysis
3. Results and Discussion
3.1. Concentrations of Organic Compounds in the Dissolved Phased
3.2. Anaerobic Digestion
3.3. Energy Balance
3.4. Empirical Models
- BIOGAS—biogas yield, cm3/gCOD;
- METHANE—methane yield, cm3CH4/gCOD;
- TOC—TOC concentration in the supernatant, mgO2/dm3; and
- OLR—initial organic load rate (OLR) of anaerobic respirometers, gCOD/dm3
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trajer, M.; Mieczkowski, M. Trends in poultry consumption after poland’s accession to the European union. In Proceedings of the International Scientific Conference “Economic Sciences for Agribusiness and Rural Economy”, Warsaw, Poland, 7–8 June 2018. No. 2. [Google Scholar] [CrossRef]
- Poultry World. Demand for Poultry Meat in EU Set to Slow. Available online: https://www.poultryworld.net/poultry/demand-for-poultry-meat-in-eu-set-to-slow/ (accessed on 9 December 2022).
- Cybulska, K.; Kołosowska, I.; Kramkowski, K.; Karpińska, M.; Roszkowicz-Ostrowska, K.; Kowalczyk, P. Improvement of Biogas Yield by Pre-Treating Poultry Waste with Bacterial Strains. Energies 2021, 14, 5601. [Google Scholar] [CrossRef]
- Mesinger, D.; Ocieczek, A. Risk Assessment of Wild Game Meat Intake in the Context of the Prospective Development of the Venison Market in Poland. Pol. J. Environ. Stud. 2021, 30, 1307–1315. [Google Scholar] [CrossRef]
- Mpofu, A.; Kibangou, V.; Kaira, W.; Oyekola, O.; Welz, P. Anaerobic Co-Digestion of Tannery and Slaughterhouse Wastewater for Solids Reduction and Resource Recovery: Effect of Sulfate Concentration and Inoculum to Substrate Ratio. Energies 2021, 14, 2491. [Google Scholar] [CrossRef]
- Rao, M.; Bast, A.; de Boer, A. Valorized Food Processing By-Products in the EU: Finding the Balance between Safety, Nutrition, and Sustainability. Sustainability 2021, 13, 4428. [Google Scholar] [CrossRef]
- European Parliament and of the Council. Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 Laying down Health Rules as Regards Animal by-Products and Derived Products Not Intended for Human Consumption and Repealing Regulation (EC) No 1774/2002 (Animal by-products Regulation). Off. J. Eur. Union 2009, 300, 1–33. [Google Scholar]
- Socas-Rodríguez, B.; Álvarez-Rivera, G.; Valdés, A.; Ibáñez, E.; Cifuentes, A. Food by-products and food wastes: Are they safe enough for their valorization? Trends Food Sci. Technol. 2021, 114, 133–147. [Google Scholar] [CrossRef]
- Commission Regulation (EU). Commission Regulation (EU) No 142/2011 of 25 February 2011 Implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council Laying down Health Rules as Regards Animal by-Products and Derived Products Not Intended for Human Consumpti. Off. J. Eur. Union 2011, 54, 1–254. [Google Scholar]
- Scherzinger, M.; Kaltschmitt, M. Thermal pre-treatment options to enhance anaerobic digestibility—A review. Renew. Sustain. Energy Rev. 2021, 137, 110627. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Mikula, K.; Skrzypczak, D.; Witek-Krowiak, A.; Mironiuk, M.; Furman, K.; Gramza, M.; Moustakas, K.; Chojnacka, K. Valorization of poultry slaughterhouse waste for fertilizer purposes as an alternative for thermal utilization methods. J. Hazard. Mater. 2022, 424, 127328. [Google Scholar] [CrossRef]
- Asses, N.; Farhat, W.; Hamdi, M.; Bouallagui, H. Large scale composting of poultry slaughterhouse processing waste: Microbial removal and agricultural biofertilizer application. Process. Saf. Environ. Prot. 2019, 124, 128–136. [Google Scholar] [CrossRef]
- Pandit, S.; Savla, N.; Sonawane, J.M.; Sani, A.M.; Gupta, P.K.; Mathuriya, A.S.; Rai, A.K.; Jadhav, D.A.; Jung, S.P.; Prasad, R. Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances. Fermentation 2021, 7, 169. [Google Scholar] [CrossRef]
- Dalke, R.; Demro, D.; Khalid, Y.; Wu, H.; Urgun-Demirtas, M. Current status of anaerobic digestion of food waste in the United States. Renew. Sustain. Energy Rev. 2021, 151, 111554. [Google Scholar] [CrossRef]
- Hiloidhari, M.; Kumari, S. Biogas upgrading and life cycle assessment of different biogas upgrading technologies. In Emerging Technologies and Biological Systems for Biogas Upgrading; Academic Press: Cambridge, MA, USA, 2021; pp. 413–445. [Google Scholar] [CrossRef]
- Bedoić, R.; Špehar, A.; Puljko, J.; Čuček, L.; Ćosić, B.; Pukšec, T.; Duić, N. Opportunities and challenges: Experimental and kinetic analysis of anaerobic co-digestion of food waste and rendering industry streams for biogas production. Renew. Sustain. Energy Rev. 2020, 130, 109951. [Google Scholar] [CrossRef]
- Dębowski, M.; Kazimierowicz, J.; Świca, I.; Zieliński, M. Ultrasonic Disintegration to Improve Anaerobic Digestion of Microalgae with Hard Cell Walls—Scenedesmus sp. and Pinnularia sp. Plants 2023, 12, 53. [Google Scholar] [CrossRef]
- Ali, M.M.; Mustafa, A.M.; Zhang, X.; Zhang, X.; Danhassaan, U.A.; Lin, H.; Choe, U.; Wang, K.; Sheng, K. Combination of ultrasonic and acidic pretreatments for enhancing biohythane production from tofu processing residue via one-stage anaerobic digestion. Bioresour. Technol. 2022, 344, 126244. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Bai, M.; Li, C.; Cui, H.; Lin, L. Advances in the mechanism of different antibacterial strategies based on ultrasound technique for controlling bacterial contamination in food industry. Trends Food Sci. Technol. 2020, 105, 211–222. [Google Scholar] [CrossRef]
- Rahman, M.; Lamsal, B.P. Ultrasound-assisted extraction and modification of plant-based proteins: Impact on physicochemical, functional, and nutritional properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1457–1480. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, R.; Guo, H. Advances in ultrasonic production units for enhanced oil recovery in China. Ultrason. Sonochem. 2020, 60, 104791. [Google Scholar] [CrossRef]
- Kong, Y.; Peng, Y.; Zhang, Z.; Zhang, M.; Zhou, Y.; Duan, Z. Removal of Microcystis aeruginosa by ultrasound: Inactivation mechanism and release of algal organic matter. Ultrason. Sonochem. 2019, 56, 447–457. [Google Scholar] [CrossRef]
- Komarov, S.; Yamamoto, T.; Fang, Y.; Hariu, D. Combined effect of acoustic cavitation and pulsed discharge plasma on wastewater treatment efficiency in a circulating reactor: A case study of Rhodamine B. Ultrason. Sonochem. 2020, 68, 105236. [Google Scholar] [CrossRef]
- Khavari, M.; Priyadarshi, A.; Hurrell, A.; Pericleous, K.; Eskin, D.; Tzanakis, I. Characterization of shock waves in power ultrasound. J. Fluid Mech. 2021, 915, R3. [Google Scholar] [CrossRef]
- Wu, W.; Eskin, D.; Priyadarshi, A.; Subroto, T.; Tzanakis, I.; Zhai, W. New insights into the mechanisms of ultrasonic emulsification in the oil—Water system and the role of gas bubbles. Ultrason. Sonochem. 2021, 73, 105501. [Google Scholar] [CrossRef] [PubMed]
- Balasubramani, N.; Venezuela, J.; Yang, N.; Wang, G.; StJohn, D.; Dargusch, M. An overview and critical assessment of the mechanisms of microstructural refinement during ultrasonic solidification of metals. Ultrason. Sonochem. 2022, 89, 106151. [Google Scholar] [CrossRef] [PubMed]
- Karthikesh, M.S.; Yang, X. The effect of ultrasound cavitation on endothelial cells. Exp. Biol. Med. 2021, 246, 758–770. [Google Scholar] [CrossRef]
- Ahn, J.-Y.; Chang, S.-W. Effects of Sludge Concentration and Disintegration/Solubilization Pretreatment Methods on Increasing Anaerobic Biodegradation Efficiency and Biogas Production. Sustainability 2021, 13, 12887. [Google Scholar] [CrossRef]
- Ouahabi, Y.; Bensadok, K.; Ouahabi, A. Optimization of the Biomethane Production Process by Anaerobic Digestion of Wheat Straw Using Chemical Pretreatments Coupled with Ultrasonic Disintegration. Sustainability 2021, 13, 7202. [Google Scholar] [CrossRef]
- Fernández-Domínguez, D.; Patureau, D.; Houot, S.; Sertillanges, N.; Zennaro, B.; Jimenez, J. Prediction of organic matter accessibility and complexity in anaerobic digestates. Waste Manag. 2021, 136, 132–142. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Bartkowska, I.; Walery, M. Effect of Low-Temperature Conditioning of Excess Dairy Sewage Sludge with the Use of Solidified Carbon Dioxide on the Efficiency of Methane Fermentation. Energies 2020, 14, 150. [Google Scholar] [CrossRef]
- Spyridonidis, A.; Skamagkis, T.; Lambropoulos, L.; Stamatelatou, K. Modeling of anaerobic digestion of slaughterhouse wastes after thermal treatment using ADM. J. Environ. Manag. 2018, 224, 49–57. [Google Scholar] [CrossRef]
- Preethi; Banu, J.R.; Varjani, S.; Sivashanmugam, P.; Tyagi, V.K.; Gunasekaran, M. Breakthrough in hydrolysis of waste biomass by physico-chemical pretreatment processes for efficient anaerobic digestion. Chemosphere 2022, 294, 133617. [Google Scholar] [CrossRef]
- Abdelhay, A.; Abu Othman, A.; Albsoul, A. Treatment of slaughterhouse wastewater using high-frequency ultrasound: Optimization of operating conditions by RSM. Environ. Technol. 2020, 42, 4170–4178. [Google Scholar] [CrossRef] [PubMed]
- Erden, G.; Buyukkamaci, N.; Filibeli, A. Effect of low frequency ultrasound on anaerobic biodegradability of meat processing effluent. Desalination 2010, 259, 223–227. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Zieliński, M.; Bartkowska, I.; Dębowski, M. Effect of Acid Whey Pretreatment Using Ultrasonic Disintegration on the Removal of Organic Compounds and Anaerobic Digestion Efficiency. Int. J. Environ. Res. Public Health 2022, 19, 11362. [Google Scholar] [CrossRef] [PubMed]
- Nour, A. The Potentials of Ultrasonic Membrane Anaerobic System (UMAS) in Treating Slaughterhouse Wastewater. In Research and Practices in Water Quality; IntechOpen: London, UK, 2014. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dzienis, L.; Dębowski, M.; Zieliński, M. Optimisation of methane fermentation as a valorisation method for food waste products. Biomass Bioenergy 2021, 144, 105913. [Google Scholar] [CrossRef]
- Seruga, P.; Krzywonos, M.; Paluszak, Z.; Urbanowska, A.; Pawlak-Kruczek, H.; Niedźwiecki, Ł.; Pińkowska, H. Pathogen Reduction Potential in Anaerobic Digestion of Organic Fraction of Municipal Solid Waste and Food Waste. Molecules 2020, 25, 275. [Google Scholar] [CrossRef]
- Apul, O.G.; Sanin, F.D. Ultrasonic pretreatment and subsequent anaerobic digestion under different operational conditions. Bioresour. Technol. 2010, 101, 8984–8992. [Google Scholar] [CrossRef]
- Oz, N.A.; Uzun, A.C. Ultrasound pretreatment for enhanced biogas production from olive mill wastewater. Ultrason. Sonochem. 2015, 22, 565–572. [Google Scholar] [CrossRef]
Indicator | Unit | Value |
---|---|---|
Total solids (TS) | [%] | 1.03 ± 0.13 |
Mineral solids (MS) | [%TS] | 12.1 ± 0.41 |
Volatile solids (VS) | [%TS] | 87.9 ± 0.41 |
Total nitrogen (TN) | [mgN/dm3] | 6800 ± 1290 |
Ammonium (N-NH4+) | [mgN-NH4/dm3] | 4120 ± 1640 |
Total phosphorus (TP) | [mgP/dm3] | 480 ± 202 |
Orthophosphate (P-PO43-) | mg P-PO4/dm3 | 291 ± 61 |
Protein | [mg/dm3] | 42,500 ± 8810 |
Lipids | [mg/dm3] | 31,700 ± 5190 |
Carbohydrates | [mg/dm3] | 2670 ± 970 |
Chemical oxygen demand (COD) | [mgO2/dm3] | 72,930 ± 4950 |
Biological oxygen demand (BOD5) | [mgO2/dm3] | 59,260 ± 3030 |
Total organic carbon (TOC) | [mg/dm3] | 28,640 ± 1470 |
COD:N ratio | - | 10.72 ± 1.52 |
BOD5:N ratio | - | 8.71 ± 1.13 |
TOC:N ratio | - | 4.22 ± 0.76 |
pH | - | 6.78 ± 0.05 |
Indicator | Unit | Value |
---|---|---|
TS | [%] | 5.7 ± 1.1 |
VS | [% TS] | 76.9 ± 2.0 |
MS | [% TS] | 23.1 ± 1.9 |
TN | [mg/gTS] | 71.3 ± 9.6 |
TP | [mg/gTS] | 11.7 ± 1.3 |
TC | [mg/gTS] | 882 ± 104.7 |
TOC | [mg/gTS] | 690.8 ± 58.3 |
C:N ratio | - | 12.4 ± 0.9 |
pH | - | 7.07 ± 0.12 |
Protein | [% DM] | 44.6 ± 3.3 |
Lipids | [% DM] | 14.1 ± 1.5 |
Saccharides | [% DM] | 3.7 ± 0.9 |
Stage | Indicator | ||||||
---|---|---|---|---|---|---|---|
COD | TOC | BOD5 | |||||
Concentration [mgO2/dm3] | Increase [%] | Concentration [mg/dm3] | Increase [%] | Concentration [mgO2/dm3] | Increase [%] | ||
0 | Raw wastewater | 29,400 ± 1950 | - | 11,580 ± 1020 | - | 21,370 ± 1330 | - |
1 | 60 min, CTP (70 °C) | 32,890 ± 1070 | 11.9 ± 0.35 | 12,410 ± 980 | 7.2 ± 0.79 | 23,880 ± 1580 | 11.7 ± 0.66 |
2 | 60 min, CTP (90 °C) | 33,920 ± 2130 | 15.4 ± 0.63 | 12,960 ± 1270 | 11.9 ± 0.98 | 24,030 ± 1720 | 12.4 ± 0.72 |
3 | 60 min, UTP (70 °C) | 39,070 ± 1710 | 32.9 ± 0.44 | 17,130 ± 720 | 47.9 ± 0.42 | 30,810 ± 1360 | 44.2 ± 0.44 |
4 | 60 min, UTP (90 °C) | 40,710 ± 1420 | 38.5 ± 0.35 | 17,970 ± 1090 | 55.2 ± 0.61 | 31,460 ± 1240 | 47.2 ± 0.39 |
Indicator | Parameter | Unit | Stage/Variant | ||
---|---|---|---|---|---|
Stage 0 | |||||
Variant 1 | Variant 2 | Variant 3 | |||
Biogas | Rate (r) | cm3/gCOD·h | 7.1 ± 0.4 | 6.0 ± 0.2 | 3.2 ± 0.3 |
Production rate constant (k) | [1/h] | 0.10 ± 0.01 | 0.09 ± 0.01 | 0.05 ± 0.01 | |
Methane | Methane content | % | 64.0 ± 3.9 | 62.3 ± 2.1 | 60.2 ± 5.1 |
Rate, r | cm3/gCOD· h | 0.10 ± 0.01 | 0.08 ± 0.01 | 0.05 ± 0.01 | |
Production rate constant (k) | [1/h] | 4.5 ± 0.3 | 3.3 ± 0.2 | 1.9 ± 0.2 | |
Indicator | Parameter | Unit | Stage 1 | ||
Variant 1 | Variant 2 | Variant 3 | |||
Biogas | Rate, r | cm3/gCOD· h | 7.1 ± 0.3 | 6.3 ± 0.5 | 4.5 ± 0.1 |
Production rate constant (k) | [1/h] | 0.10 ± 0.01 | 0.09 ± 0.01 | 0.07 ± 0.01 | |
Methane | Methane content | % | 70.4 ± 2.7 | 69.2 ± 4.3 | 67.9 ± 3.1 |
Rate, r | cm3/gCOD· h | 0.10 ± 0.01 | 0.09 ± 0.01 | 0.06 ± 0.01 | |
Production rate constant (k) | [1/h] | 5.1 ± 0.2 | 4.4 ± 0.4 | 2.6 ± 0.1 | |
Indicator | Parameter | Unit | Stage 2 | ||
Variant 1 | Variant 2 | Variant 3 | |||
Biogas | Rate, r | cm3/gCOD· h | 8.1 ± 0.3 | 7.2 ± 0.3 | 6.1 ± 0.2 |
Production rate constant (k) | [1/h] | 0.11 ± 0.01 | 0.10 ± 0.01 | 0.09 ± 0.01 | |
Methane | Methane content | % | 69.1 ± 2.4 | 69.0 ± 4.0 | 67.2 ± 3.1 |
Rate, r | cm3/gCOD· h | 5.1 ± 0.2 | 4.5 ± 0.3 | 3.6 ± 0.2 | |
Production rate constant (k) | [1/h] | 0.10 ± 0.01 | 0.09 ± 0.01 | 0.08 ± 0.01 | |
Indicator | Parameter | Unit | Stage 3 | ||
Variant 1 | Variant 2 | Variant 3 | |||
Biogas | Rate, r | cm3/gCOD· h | 8.8 ± 0.2 | 7.3 ± 0.2 | 6.9 ± 0.3 |
Production rate constant (k) | [1/h] | 0.11 ± 0.01 | 0.10 ± 0.01 | 0.10 ± 0.01 | |
Methane | Methane content | % | 69.3 ± 1.7 | 69.9 ± 3.1 | 68.7 ± 2.2 |
Rate, r | cm3/gCOD· h | 5.5 ± 0.1 | 4.6 ± 0.2 | 4.3 ± 0.1 | |
Production rate constant (k) | [1/h] | 0.10 ± 0.01 | 0.09 ± 0.01 | 0.09 ± 0.01 | |
Indicator | Parameter | Unit | Stage 4 | ||
Variant 1 | Variant 2 | Variant 3 | |||
Biogas | Rate, r | cm3/gCOD· h | 9.0 ± 0.2 | 7.7 ± 0.3 | 6.5 ± 0.2 |
Production rate constant (k) | [1/h] | 0.11 ± 0.01 | 0.10 ± 0.01 | 0.09 ± 0.01 | |
Methane | Methane content | % | 69.8 ± 1.4 | 70.6 ± 2.1 | 70.1 ± 1.7 |
Rate, r | cm3/gCOD· h | 5.7 ± 0.1 | 4.9 ± 0.2 | 4.5 ± 0.1 | |
Production rate constant (k) | [1/h] | 0.10 ± 0.01 | 0.09 ± 0.01 | 0.09 ± 0.01 |
Stage | Variant | Esin. [Wh] | CODin [g] | Ein [Wh/gCOD] | MCODin [g] | EtotinR [Wh] | CH4R [cm3/gCOD] | YCH4out [cm3] | ECH4 [Wh/cm3] | ECH4out [Wh] | Enet [Wh] |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 72.9 ± 4.95 | 0 | 1 | 0 | 270 ± 21 | 270 ± 21 | 0.00917 | 3.88 ± 0.19 | 3.88 ± 0.19 |
2 | 2 | 249 ± 19 | 498 ± 38 | 7.33 ± 0.35 | 7.33 ± 0.35 | ||||||
3 | 3 | 229 ± 27 | 687 ± 81 | 10.48 ± 0.74 | 10.48 ± 0.74 | ||||||
Stage | Variant | Esin. [Wh] | CODin [g] | Ein [Wh/gCOD] | MCODin [g] | EtotinR [Wh] | CH4R [cm3/gCOD] | YCH4out [cm3] | ECH4 [Wh/cm3] | ECH4out [Wh] | Enet [Wh] |
1 | 1 | 116 ± 9 | 72.9 ± 4.95 | 1.60 ± 0.14 | 1 | 1.60 ± 0.14 | 304 ± 13 | 304 ± 13 | 0.00917 | 3.96 ± 0.12 | 2.36 ± 0.13 |
2 | 2 | 3.20 ± 0.28 | 292 ± 24 | 584 ± 48 | 7.73 ± 0.44 | 4.53 ± 0.36 | |||||
3 | 3 | 4.80 ± 0.42 | 265 ± 16 | 795 ± 48 | 10.72 ± 0.44 | 5.92 ± 0.43 | |||||
Stage | Variant | Esin. [Wh] | CODin [g] | Ein [Wh/gCOD] | MCODin [g] | EtotinR [Wh] | CH4R [cm3/gCOD] | YCH4out [cm3] | ECH4 [Wh/cm3] | ECH4out [Wh] | Enet [Wh] |
2 | 1 | 150 ± 12 | 72.9 ± 4.95 | 2.06 ± 0.16 | 1 | 2.06 ± 0.16 | 306 ± 12 | 306 ± 12 | 0.00917 | 4.06 ± 0.11 | 2.00 ± 0.13 |
2 | 2 | 4.12 ± 0.32 | 297 ± 19 | 595 ± 38 | 7.90 ± 0.35 | 3.78 ± 0.33 | |||||
3 | 3 | 6.18 ± 0.48 | 273 ± 13 | 818 ± 39 | 11.16 ± 0.36 | 4.98 ± 0.42 | |||||
Stage | Variant | Esin. [Wh] | CODin [g] | Ein [Wh/gCOD] | MCODin [g] | EtotinR [Wh] | CH4R [cm3/gCOD] | YCH4out [cm3] | ECH4 [Wh/cm3] | ECH4out [Wh] | Enet [Wh] |
3 | 1 | 136 ± 17 | 72.9 ± 4.95 | 1.87 ± 0.19 | 1 | 1.87 ± 0.19 | 332 ± 9 | 332 ± 9 | 0.00917 | 4.40 ± 0.08 | 2.53 ± 0.17 |
2 | 2 | 3.74 ± 0.38 | 308 ± 12 | 616 ± 24 | 8.08 ± 0.22 | 4.34 ± 0.30 | |||||
3 | 3 | 5.61 ± 0.57 | 285 ± 10 | 855 ± 30 | 11.41 ± 0.27 | 5.80 ± 0.42 | |||||
Stage | Variant | Esin. [Wh] | CODin [g] | Ein [Wh/gCOD] | MCODin [g] | EtotinR [Wh] | CH4R [cm3/gCOD] | YCH4out [cm3] | ECH4 [Wh/cm3] | ECH4out [Wh] | Enet [Wh] |
4 | OLR2 | 180 ± 19 | 72.9 ± 4.95 | 2.46 ± 0.21 | 1 | 2.46 ± 0.21 | 343 ± 7 | 343 ± 7 | 0.00917 | 4.5 ± 0.06 | 2.04 ± 0.14 |
OLR4 | 2 | 4.92 ± 0.42 | 325 ± 11 | 650 ± 22 | 8.43 ± 0.20 | 3.51 ± 0.31 | |||||
OLR6 | 3 | 7.38 ± 0.63 | 302 ± 8 | 906 ± 24 | 11.84 ± 0.24 | 4.46 ± 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazimierowicz, J.; Dębowski, M.; Zieliński, M. The Synergistic Effect of Simultaneous Ultrasound Heating and Disintegration on the Technological Efficiency and Energetic Balance of Anaerobic Digestion of High-Load Slaughter Poultry Sewage. Appl. Sci. 2023, 13, 2420. https://doi.org/10.3390/app13042420
Kazimierowicz J, Dębowski M, Zieliński M. The Synergistic Effect of Simultaneous Ultrasound Heating and Disintegration on the Technological Efficiency and Energetic Balance of Anaerobic Digestion of High-Load Slaughter Poultry Sewage. Applied Sciences. 2023; 13(4):2420. https://doi.org/10.3390/app13042420
Chicago/Turabian StyleKazimierowicz, Joanna, Marcin Dębowski, and Marcin Zieliński. 2023. "The Synergistic Effect of Simultaneous Ultrasound Heating and Disintegration on the Technological Efficiency and Energetic Balance of Anaerobic Digestion of High-Load Slaughter Poultry Sewage" Applied Sciences 13, no. 4: 2420. https://doi.org/10.3390/app13042420
APA StyleKazimierowicz, J., Dębowski, M., & Zieliński, M. (2023). The Synergistic Effect of Simultaneous Ultrasound Heating and Disintegration on the Technological Efficiency and Energetic Balance of Anaerobic Digestion of High-Load Slaughter Poultry Sewage. Applied Sciences, 13(4), 2420. https://doi.org/10.3390/app13042420