Optimization Framework for Temporal Interference Current Tibial Nerve Stimulation in Tibial Nerves Based on In-Silico Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. MR Datasets
2.2. 3D Modeling Using MR Images
2.3. Simulation of Independent Electric Field Formation
2.4. Post-Processing to Identify Optimal Conditions
3. Results
3.1. Necessity of TI Stimulation Optimization
3.2. Improvement of TI Stimulation Optimization with Free Pair Acceptance of Electrodes
3.3. Comparison of Improvements in Maximum Optimization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nitti, V.W. Clinical impact of overactive bladder. Rev. Urol. 2002, 4, S2. [Google Scholar]
- Haylen, B.T.; De Ridder, D.; Freeman, R.M.; Swift, S.E.; Berghmans, B.; Lee, J.; Monga, A.; Petri, E.; Rizk, D.E.; Sand, P.K. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Neurourol. Urodyn. Off. J. Int. Cont. Soc. 2010, 29, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Andersson, K.-E.; Yoshida, M. Antimuscarinics and the overactive detrusor—Which is the main mechanism of action? Eur. Urol. 2003, 43, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Nabi, G.; Cody, J.D.; Ellis, G.; Hay-Smith, J.; Herbison, G.P. Anticholinergic drugs versus placebo for overactive bladder syndrome in adults. Cochrane Database Syst. Rev. 2006, 4, CD003781. [Google Scholar] [CrossRef]
- Chapple, C.R.; Khullar, V.; Gabriel, Z.; Muston, D.; Bitoun, C.E.; Weinstein, D. The effects of antimuscarinic treatments in overactive bladder: An update of a systematic review and meta-analysis. Eur. Urol. 2008, 54, 543–562. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Nitti, V.W. Defining efficacy in the treatment of overactive bladder syndrome. Rev. Urol. 2009, 11, 196. [Google Scholar] [PubMed]
- Benner, J.S.; Nichol, M.B.; Rovner, E.S.; Jumadilova, Z.; Alvir, J.; Hussein, M.; Fanning, K.; Trocio, J.N.; Brubaker, L. Patient-reported reasons for discontinuing overactive bladder medication. BJU Int. 2010, 105, 1276–1282. [Google Scholar] [CrossRef]
- Kurpad, R.; Kennelly, M.J. The Evaluation and Management of Refractory Neurogenic Overactive Bladder. Curr. Urol. Rep. 2014, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Wang, Y.H.; Gao, Y.L. Overactive Bladder Symptoms within Nervous System: A Focus on Etiology. Front. Physiol. 2021, 12. [Google Scholar] [CrossRef]
- Lightner, D.J.; Gomelsky, A.; Souter, L.; Vasavada, S.P. Diagnosis and Treatment of Overactive Bladder (Non-Neurogenic) in Adults: Aua/Sufu Guideline Amendment 2019. J. Urol. 2019, 202, 558–563. [Google Scholar] [CrossRef]
- Norderval, S.; Rydningen, M.; Lindsetmo, R.-O.; Lein, D.; Vonen, B. Sacral nerve stimulation. Tidsskr. Nor. Legefore. 2011, 131, 1190–1193. [Google Scholar] [CrossRef] [PubMed]
- Siegel, S.W.; Catanzaro, F.; Dijkema, H.E.; Elhilali, M.M.; Fowler, C.J.; Gajewski, J.B.; Hassouna, M.M.; Janknegt, R.A.; Jonas, U.; Van Kerrebroeck, P.E. Long-term results of a multicenter study on sacral nerve stimulation for treatment of urinary urge incontinence, urgency-frequency, and retention. Urology 2000, 56, 87–91. [Google Scholar] [CrossRef]
- Jonas, U.; Fowler, C.; Chancellor, M.; Elhilali, M.; Fall, M.; Gajewski, J.; Grünewald, V.; Hassouna, M.; Hombergh, U.; Janknegt, R. Efficacy of sacral nerve stimulation for urinary retention: Results 18 months after implantation. J. Urol. 2001, 165, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Brazzelli, M.; Murray, A.; Fraser, C. Efficacy and safety of sacral nerve stimulation for urinary urge incontinence: A systematic review. J. Urol. 2006, 175, 835–841. [Google Scholar] [CrossRef]
- Peters, K.M.; Carrico, D.J.; Wooldridge, L.S.; Miller, C.J.; MacDiarmid, S.A. Percutaneous tibial nerve stimulation for the long-term treatment of overactive bladder: 3-year results of the STEP study. J. Urol. 2013, 189, 2194–2201. [Google Scholar] [CrossRef]
- Slovak, M.; Chapple, C.R.; Barker, A.T. Non-invasive transcutaneous electrical stimulation in the treatment of overactive bladder. Asian J. Urol. 2015, 2, 92–101. [Google Scholar] [CrossRef]
- Seth, J.H.; Gonzales, G.; Haslam, C.; Pakzad, M.; Vashisht, A.; Sahai, A.; Knowles, C.; Tucker, A.; Panicker, J. Feasibility of using a novel non-invasive ambulatory tibial nerve stimulation device for the home-based treatment of overactive bladder symptoms. Transl. Androl. Urol. 2018, 7, 912. [Google Scholar] [CrossRef]
- Lee, J.; Park, E.; Kang, W.; Kim, Y.; Lee, K.-S.; Park, S.-M. An efficient noninvasive neuromodulation modality for overactive bladder using time interfering current method. IEEE Trans. Biomed. Eng. 2020, 68, 214–224. [Google Scholar] [CrossRef]
- Yang, C.; Park, S. Nanomaterials-assisted thermally induced neuromodulation. Biomed. Eng. Lett. 2021, 11, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Grossman, N.; Bono, D.; Dedic, N.; Kodandaramaiah, S.B.; Rudenko, A.; Suk, H.-J.; Cassara, A.M.; Neufeld, E.; Kuster, N.; Tsai, L.-H. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 2017, 169, 1029–1041.e16. [Google Scholar] [CrossRef]
- Bai, S.; Dokos, S.; Ho, K.-A.; Loo, C. A computational modelling study of transcranial direct current stimulation montages used in depression. Neuroimage 2014, 87, 332–344. [Google Scholar] [CrossRef]
- Kilgore, K.L.; Bhadra, N. Reversible nerve conduction block using kilohertz frequency alternating current. Neuromodulation: Technol. Neural Interface 2014, 17, 242–255. [Google Scholar] [CrossRef]
- Lee, S.; Lee, C.; Park, J.; Im, C.-H. Individually customized transcranial temporal interference stimulation for focused modulation of deep brain structures: A simulation study with different head models. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Miranda, P.C.; Mekonnen, A.; Salvador, R.; Ruffini, G. The electric field in the cortex during transcranial current stimulation. Neuroimage 2013, 70, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Saturnino, G.B.; Madsen, K.H.; Siebner, H.R.; Thielscher, A. How to target inter-regional phase synchronization with dual-site transcranial alternating current stimulation. Neuroimage 2017, 163, 68–80. [Google Scholar] [CrossRef]
- Cao, J.; Grover, P. Stimulus: Noninvasive dynamic patterns of neurostimulation using spatio-temporal interference. IEEE Trans. Biomed. Eng. 2019, 67, 726–737. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Kuwahata, A.; Liu, S.; Sekino, M. Magnetically induced temporal interference for focal and deep-brain stimulation. Front. Hum. Neurosci. 2021, 15, 693207. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.; Lee, C.; Im, C.-H. Multipair transcranial temporal interference stimulation for improved focalized stimulation of deep brain regions: A simulation study. Comput. Biol. Med. 2022, 143, 105337. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Parra, L.C. Can transcranial electric stimulation with multiple electrodes reach deep targets? Brain Stimul. 2019, 12, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Li, W. Biomechanics of infarcted left ventricle: A review of modelling. Biomed. Eng. Lett. 2020, 10, 387–417. [Google Scholar] [CrossRef]
- Gabriel, C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies; King’s College London (United Kingdom) Department of Physics: London, UK, 1996. [Google Scholar]
- Reato, D.; Rahman, A.; Bikson, M.; Parra, L.C. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J. Neurosci. 2010, 30, 15067–15079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, W.-Y.; Zanto, T.P.; Gazzaley, A. Parametric effects of transcranial alternating current stimulation on multitasking performance. Brain Stimul. 2019, 12, 73–83. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Value |
---|---|
Number of subjects | 29 |
Age (Years) | 42.3 ± 15.9 (19–76) |
Gender (Male:Female) | 13 (44.83%):16 (55.17%) |
Ankle direction (Right:Left) | 18 (62.07%):11 (37.93%) |
Material | Conductivity σ (S/m) |
---|---|
Skin | 0.17 |
Fat | 0.0573412 |
Muscle | 0.355287 |
Tendon Ligament | 0.367577 |
Vessel | 0.231972 |
Nerve | 0.265076 |
Bone | 0.00350399 |
Bone Marrow | 0.00247168 |
Gel | 0.6 |
Subject ID | Parallel Opt TI Pair | Cross Opt TI Pair | ||
---|---|---|---|---|
0A7CE3A9878D | E1: 2, 14 | E2: 4, 16 | E1: 1, 19 | E2: 3, 16 |
0BB634E25B39 | E1: 2, 14 | E2: 5, 17 | E1: 2, 14 | E2: 5, 17 |
0C2CD6A715D9 | E1: 3, 15 | E2: 5, 17 | E1: 3, 15 | E2: 5, 17 |
0C6B9FB295F5 | E1: 9, 21 | E2: 12, 24 | E1: 9, 21 | E2: 12, 24 |
04FD92123E3B | E1: 1, 13 | E2: 6, 18 | E1: 5, 16 | E2: 10, 13 |
049DE0BA46DB | E1: 2, 14 | E2: 4, 16 | E1: 2, 14 | E2: 4, 16 |
056BB93171A1 | E1: 2, 14 | E2: 4, 16 | E1: 1, 20 | E2: 4, 15 |
142F50561C17 | E1: 2, 14 | E2: 5, 17 | E1: 1, 22 | E2: 4, 17 |
145A6B872F35 | E1: 2, 14 | E2: 7, 19 | E1: 2, 14 | E2: 7, 19 |
1047A2F46867 | E1: 2, 14 | E2: 4, 16 | E1: 2, 14 | E2: 4, 16 |
1ADD8CA28477 | E1: 10, 22 | E2: 12, 24 | E1: 6, 14 | E2: 11, 22 |
2C6D63044761 | E1: 2, 14 | E2: 4, 16 | E1: 2, 19 | E2: 4, 15 |
122A1B6D95A9 | E1: 1, 13 | E2: 10, 22 | E1: 1, 13 | E2: 10, 22 |
314FCC7AC93 | E1: 9, 21 | E2: 12, 24 | E1: 9, 21 | E2: 12, 24 |
4822C489EC4B | E1: 1, 13 | E2: 5, 17 | E1: 1, 13 | E2: 5, 17 |
A7EAB9020A9B | E1: 2, 14 | E2: 4, 16 | E1: 2, 14 | E2: 4, 16 |
F3DA08325EFB | E1: 11, 23 | E2: 12, 24 | E1: 7, 24 | E2: 10, 23 |
FC4D5480D29B | E1: 10, 22 | E2: 11, 23 | E1: 9, 21 | E2: 11, 13 |
32A8962F076D | E1: 9, 21 | E2: 12, 24 | E1: 9, 21 | E2: 12, 24 |
32D584F66995 | E1: 2, 14 | E2: 6, 18 | E1: 2, 24 | E2: 4, 17 |
82CA5FFFD969 | E1: 1, 13 | E2: 11, 23 | E1: 1, 20 | E2: 12, 23 |
84F96B24DC37 | E1: 9, 21 | E2: 12, 24 | E1: 1, 14 | E2: 10, 21 |
86E655D35063 | E1: 11, 23 | E2: 12, 24 | E1: 11, 21 | E2: 12, 24 |
377F6827B403 | E1: 2, 14 | E2: 3, 15 | E1: 2, 14 | E2: 3, 15 |
714C5CA7D5C9 | E1: 3, 15 | E2: 4, 16 | E1: 2, 15 | E2: 4, 16 |
4854E61F9C73 | E1: 10, 22 | E2: 12, 24 | E1: 6, 13 | E2: 10, 23 |
AFA8C6F48087 | E1: 10, 22 | E2: 12, 24 | E1: 5, 13 | E2: 10, 23 |
BDBD4C7F4443 | E1: 11, 23 | E2: 12, 24 | E1: 10, 24 | E2: 10, 23 |
EB27F9C7CA47 | E1: 1, 13 | E2: 8, 20 | E1: 10, 21 | E2: 12, 24 |
Subject ID | Electrode Pair | Current Adjustment | ||
---|---|---|---|---|
0A7CE3A9878D | E1: 3, 16 | E2: 10, 19 | E1: 0.6 | E2: 1.4 |
0BB634E25B39 | E1: 2, 14 | E2: 4, 16 | E1: 1.5 | E2: 0.5 |
0C2CD6A715D9 | E1: 3, 15 | E2: 5, 17 | E1: 0.9 | E2: 1.1 |
0C6B9FB295F5 | E1: 9, 21 | E2: 12, 24 | E1: 1.0 | E2: 1.0 |
04FD92123E3B | E1: 2, 14 | E2: 6, 18 | E1: 0.5 | E2: 1.5 |
049DE0BA46DB | E1: 2, 14 | E2: 5, 17 | E1: 0.8 | E2: 1.2 |
056BB93171A1 | E1: 2, 14 | E2: 5, 17 | E1: 0.7 | E2: 1.3 |
142F50561C17 | E1: 1, 23 | E2: 4, 17 | E1: 1.1 | E2: 0.9 |
145A6B872F35 | E1: 2, 14 | E2: 7, 19 | E1: 1.0 | E2: 1.0 |
1047A2F46867 | E1: 2, 14 | E2: 5, 17 | E1: 0.7 | E2: 1.3 |
1ADD8CA28477 | E1: 11, 23 | E2: 12, 24 | E1: 0.5 | E2: 1.5 |
2C6D63044761 | E1: 1, 19 | E2: 3, 16 | E1: 1.5 | E2: 0.5 |
122A1B6D95A9 | E1: 1, 13 | E2: 10, 22 | E1: 0.7 | E2: 1.3 |
314FCC7AC93 | E1: 9, 21 | E2: 12, 24 | E1: 1.1 | E2: 0.9 |
4822C489EC4B | E1: 1, 13 | E2: 4, 16 | E1: 1.3 | E2: 0.7 |
A7EAB9020A9B | E1: 1, 13 | E2: 4, 16 | E1: 1.5 | E2: 0.5 |
F3DA08325EFB | E1: 1, 24 | E2: 10, 23 | E1: 1.4 | E2: 0.6 |
FC4D5480D29B | E1: 9, 21 | E2: 11, 23 | E1: 1.4 | E2: 0.6 |
32A8962F076D | E1: 9, 21 | E2: 12, 24 | E1: 1.2 | E2: 0.8 |
32D584F66995 | E1: 3, 15 | E2: 6, 18 | E1: 0.5 | E2: 1.5 |
82CA5FFFD969 | E1: 1, 13 | E2: 11, 23 | E1: 1.2 | E2: 0.8 |
84F96B24DC37 | E1: 9, 21 | E2: 12, 24 | E1: 1.4 | E2: 0.6 |
86E655D35063 | E1: 11, 23 | E2: 12, 24 | E1: 0.5 | E2: 1.5 |
377F6827B403 | E1: 1, 13 | E2: 3, 15 | E1: 1.5 | E2: 0.5 |
714C5CA7D5C9 | E1: 2, 14 | E2: 4, 16 | E1: 1.5 | E2: 0.5 |
4854E61F9C73 | E1: 7, 18 | E2: 10, 23 | E1: 1.4 | E2: 0.6 |
AFA8C6F48087 | E1: 10, 22 | E2: 12, 24 | E1: 1.2 | E2: 0.8 |
BDBD4C7F4443 | E1: 3, 13 | E2: 10, 23 | E1: 1.3 | E2: 0.7 |
EB27F9C7CA47 | E1: 10, 21 | E2: 12, 24 | E1: 0.9 | E2: 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.; Ye, E.; Lee, J.; Kim, T.; Choi, D.; Lee, K.; Park, S. Optimization Framework for Temporal Interference Current Tibial Nerve Stimulation in Tibial Nerves Based on In-Silico Studies. Appl. Sci. 2023, 13, 2430. https://doi.org/10.3390/app13042430
Kim E, Ye E, Lee J, Kim T, Choi D, Lee K, Park S. Optimization Framework for Temporal Interference Current Tibial Nerve Stimulation in Tibial Nerves Based on In-Silico Studies. Applied Sciences. 2023; 13(4):2430. https://doi.org/10.3390/app13042430
Chicago/Turabian StyleKim, Eunseon, Eunbi Ye, Jiho Lee, Taekyung Kim, Dongil Choi, Kyusung Lee, and Sungmin Park. 2023. "Optimization Framework for Temporal Interference Current Tibial Nerve Stimulation in Tibial Nerves Based on In-Silico Studies" Applied Sciences 13, no. 4: 2430. https://doi.org/10.3390/app13042430
APA StyleKim, E., Ye, E., Lee, J., Kim, T., Choi, D., Lee, K., & Park, S. (2023). Optimization Framework for Temporal Interference Current Tibial Nerve Stimulation in Tibial Nerves Based on In-Silico Studies. Applied Sciences, 13(4), 2430. https://doi.org/10.3390/app13042430