Biogenic Nanomagnetic Carriers Derived from Magnetotactic Bacteria: Magnetic Parameters of Magnetosomes Inside Magnetospirillum spp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of MTB
2.2. Characterization of Bacteria
2.3. Magnetic Measurements and Data Quantifying
3. Results and Discussion
3.1. Transmission Electron Microscopy
3.2. Atomic Force Microscopy
3.3. NLR-M2 Results
3.4. EMR Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faivre, D.; Schueler, D. Magnetotactic bacteria and magnetosomes. Chem. Rev. 2008, 108, 4875–4898. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, C.; Bernadac, A.; Yu-Zhang, K.; Pradel, N.; Wu, L.-F. Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environ. Microbiol. 2009, 11, 1646–1657. [Google Scholar] [CrossRef] [PubMed]
- Lower, B.H.; Bazylinski, D.A. The Bacterial Magnetosome: A Unique Prokaryotic Organelle. Microb. Physiol. 2013, 23, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.J.; Suthindhiran, K. Magnetotactic bacteria and magnetosomes—Scope and challenges. Mater. Sci. Eng. C 2016, 68, 919–928. [Google Scholar] [CrossRef]
- Gareev, K.G.; Grouzdev, D.S.; Kharitonskii, P.V.; Kosterov, A.; Koziaeva, V.V.; Sergienko, E.S.; Shevtsov, M.A. Magnetotactic Bacteria and Magnetosomes: Basic Properties and Applications. Magnetochemistry 2021, 7, 86. [Google Scholar] [CrossRef]
- Alphandery, E.; Guyot, F.; Chebbi, I. Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. Int. J. Pharm. 2012, 434, 444–452. [Google Scholar] [CrossRef]
- Alphandéry, E. Applications of Magnetosomes Synthesized by Magnetotactic Bacteria in Medicine. Front. Bioeng. Biotechnol. 2014, 2, 5. [Google Scholar] [CrossRef] [PubMed]
- Hergt, R.; Hiergeist, R.; Zeisberger, M.; Schüler, D.; Heyen, U.; Hilger, I.; Kaiser, W.A. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J. Magn. Magn. Mater. 2005, 293, 80–86. [Google Scholar] [CrossRef]
- Kahani, S.A.; Yagini, Z. A Comparison between Chemical Synthesis Magnetite Nanoparticles and Biosynthesis Magnetite. Bioinorg. Chem. Appl. 2014, 2014, 384984. [Google Scholar] [CrossRef] [PubMed]
- Nishio, K.; Ikeda, M.; Gokon, N.; Tsubouchi, S.; Narimatsu, H.; Mochizuki, Y.; Sakamoto, S.; Sandhu, A.; Abe, M.; Handa, H. Preparation of size-controlled (30–100 nm) magnetite nanoparticles for biomedical applications. J. Magn. Magn. Mater. 2007, 310, 2408–2410. [Google Scholar] [CrossRef]
- Monteil, C.; Grouzdev, D.S.; Perrière, G.; Alonso, B.; Rouy, Z.; Cruveiller, S.; Ginet, N.; Pignol, D.; Lefevre, C.T. Repeated horizontal gene transfers triggered parallel evolution of magnetotaxis in two evolutionary divergent lineages of magnetotactic bacteria. ISME J. 2020, 14, 1783–1794. [Google Scholar] [CrossRef] [PubMed]
- Koziaeva, V.V.; Rusakova, S.A.; Slobodova, N.V.; Uzun, M.; Kolganova, T.V.; Skryabin, K.G.; Grouzdev, D.S. Magnetospirillum kuznetsovii sp. nov., a novel magnetotactic bacterium isolated from a lake in the Moscow region. Int. J. Syst. Evol. Microbiol. 2019, 69, 1953–1959. [Google Scholar] [CrossRef] [PubMed]
- Dziuba, M.; Koziaeva, V.; Grouzdev, D.; Burganskaya, E.; Baslerov, R.; Kolganova, T.; Chernyadyev, A.; Osipov, G.; Andrianova, E.; Gorlenko, V.; et al. Magnetospirillum caucaseum sp. nov., Magnetospirillum marisnigri sp. nov. and Magnetospirillum moscoviense sp. nov., freshwater magnetotactic bacteria isolated from three distinct geographical locations in European Russia. Int. J. Syst. Evol. Microbiol. 2016, 66, 2069–2077. [Google Scholar] [CrossRef] [PubMed]
- Taoka, A.; Kiyokawa, A.; Uesugi, C.; Kikuchi, Y.; Oestreicher, Z.; Morii, K.; Eguchi, Y.; Fukumori, Y. Tethered Magnets Are the Key to Magnetotaxis: Direct Observations of Magnetospirillum magneticum AMB-1 Show that MamK Distributes Magnetosome Organelles Equally to Daughter Cells. Mbio 2017, 8, e00679-17. [Google Scholar] [CrossRef]
- Toro-Nahuelpan, M.; Müller, F.D.; Klumpp, S.; Plitzko, J.M.; Bramkamp, M.; Schüler, D. Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol. 2016, 14, 88. [Google Scholar] [CrossRef]
- Wan, J.; Monteil, C.L.; Taoka, A.; Ernie, G.; Park, K.; Amor, M.; Taylor-Cornejo, E.; Lefevre, C.T.; Komeili, A. McaA and McaB control the dynamic positioning of a bacterial magnetic organelle. Nat. Commun. 2022, 13, 5652. [Google Scholar] [CrossRef]
- Marcano, L.; García-Prieto, A.; Muñoz, D.; Barquín, L.F.; Orue, I.; Alonso, J.; Muela, A.; Fdez-Gubieda, M. Influence of the bacterial growth phase on the magnetic properties of magnetosomes synthesized by Magnetospirillum gryphiswaldense. Biochim. Biophys. Acta (BBA) Gen. Subj. 2017, 1861, 1507–1514. [Google Scholar] [CrossRef] [PubMed]
- Moisescu, C.; Ardelean, I.I.; Benning, L.G. The effect and role of environmental conditions on magnetosome synthesis. Front. Microbiol. 2014, 5, 49. [Google Scholar] [CrossRef] [PubMed]
- Gandia, D.; Marcano, L.; Gandarias, L.; Villanueva, D.; Orue, I.; Abrudan, R.M.; Valencia, S.; Rodrigo, I.; García, J.; Muela, A.; et al. Tuning the Magnetic Response of Magnetospirillum magneticum by Changing the Culture Medium: A Straightforward Approach to Improve Their Hyperthermia Efficiency. ACS Appl. Mater. Interfaces 2022, 15, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Popa, R.; Fang, W.; Nealson, K.H.; Souza-Egipsy, V.; Berquó, T.S.; Benerjee, S.K.; Penn, L.R. Effect of oxidative stress on the growth of magnetic particles in Magnetospirillum magneticum. Int. Microbiol. 2009, 12, 49–57. [Google Scholar] [PubMed]
- Firlar, E.; Perez-Gonzalez, T.; Olszewska, A.; Faivre, D.; Prozorov, T. Following iron speciation in the early stages of magnetite magnetosome biomineralization. J. Mater. Res. 2016, 31, 547–555. [Google Scholar] [CrossRef]
- Le Nagard, L.; Zhu, X.; Yuan, H.; Benzerara, K.; Bazylinski, D.A.; Fradin, C.; Besson, A.; Swaraj, S.; Stanescu, S.; Belkhou, R.; et al. Magnetite magnetosome biomineralization in Magnetospirillum magneticum strain AMB-1: A time course study. Chem. Geol. 2019, 530, 119348. [Google Scholar] [CrossRef]
- Alphandéry, E.; Ngo, A.T.; Lefèvre, C.; Lisiecki, I.; Wu, L.F.; Pileni, M.P. Difference between the Magnetic Properties of the Magnetotactic Bacteria and Those of the Extracted Magnetosomes: Influence of the Distance between the Chains of Magnetosomes. J. Phys. Chem. C 2008, 112, 12304–12309. [Google Scholar] [CrossRef]
- Gareev, K.G.; Grouzdev, D.S.; Kharitonskii, P.V.; Kirilenko, D.A.; Kosterov, A.; Koziaeva, V.V.; Levitskii, V.S.; Multhoff, G.; Nepomnyashchaya, E.K.; Nikitin, A.V.; et al. Magnetic Properties of Bacterial Magnetosomes Produced by Magnetospirillum caucaseum SO-1. Microorganisms 2021, 9, 1854. [Google Scholar] [CrossRef]
- Lazuta, A.V.; Ryzhov, V.A.; Runov, V.V.; Khavronin, V.P.; Deriglazov, V.V. Temperature evolution of superparamagnetic clusters in single-crystalLa0.85Sr0.15CoO3characterized by nonlinear magnetic ac response and neutron depolarization. Phys. Rev. B 2015, 92, 14404–14411. [Google Scholar] [CrossRef]
- Ryzhov, V.A.; Kiselev, I.A.; Smirnov, O.P.; Chernenkov, Y.P.; Deriglazov, V.V.; Marchenko, Y.Y.; Yakovleva, L.Y.; Nikolaev, B.P.; Bogachev, Y.V. Comprehensive characterization of magnetite-based colloid for biomedical applications. Appl. Phys. A 2019, 125, 322. [Google Scholar] [CrossRef]
- Schleifer, K.H.; Schüler, D.; Spring, S.; Weizenegger, M.; Amann, R.; Ludwig, W.; Köhler, M. The Genus Magnetospirillum gen. nov. Description of Magnetospirillum gryphiswaldense sp. nov. and Transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst. Appl. Microbiol. 1991, 14, 379–385. [Google Scholar] [CrossRef]
- Heyen, U.; Schüler, D. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol. 2003, 61, 536–544. [Google Scholar] [CrossRef]
- Matsunaga, T.; Sakaguchi, T.; Tadakoro, F. Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl. Microbiol. Biotechnol. 1991, 35, 651–655. [Google Scholar] [CrossRef]
- Yang, C.-D.; Takeyama, H.; Tanaka, T.; Matsunaga, T. Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enzym. Microb. Technol. 2001, 29, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Gullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2009; pp. 359–397. [Google Scholar]
- Ryzhov, V.A.; Larionov, I.I.; Fomichev, V.N. On the spurious signal in the longitudinal nonlinear susceptibility of magnets at the second harmonic of excitation frequency. Tech. Phys. 1996, 41, 620–626. [Google Scholar]
- Ryzhov, V.A.; Zavatskii, E.I. Device to Research Magnetic Properties of Magnetics. Russian Federation Patent 2,507,527, 20 February 2014. Available online: https://patents.google.com/patent/RU2507527C1/en?oq=RU2507527 (accessed on 10 February 2023).
- Shevtsov, M.A.; Nikolaev, B.P.; Ryzhov, V.A.; Yakovleva, L.Y.; Dobrodumov, A.V.; Marchenko, Y.Y.; Margulis, B.A.; Pitkin, E.; Guzhova, I.V. Brain tumor magnetic targeting and biodistribution of superparamagnetic iron oxide nanoparticles linked with 70-kDa heat shock protein study by nonlinear longitudinal response. J. Magn. Magn. Mater. 2015, 388, 123–134. [Google Scholar] [CrossRef]
- Lazuta, A.V.; Larionov, I.I.; Ryzhov, V.A. Second-harmonic response of a cubic ferrromagnet in the critical paramagnetic neighborhood of TC. Sov. Phys. JETP 1991, 73, 1086–1095. [Google Scholar]
- Ryzhov, V.A.; Pleshakov, I.V.; Nechitailov, A.; Glebova, N.V.; Pyatyshev, E.N.; Malkova, A.V.; Kiselev, I.A.; Matveev, V. Magnetic Study of Nanostructural Composite Material Based on Cobalt Compounds and Porous Silicon. Appl. Magn. Reson. 2014, 45, 339–352. [Google Scholar] [CrossRef]
- Ryzhov, V.A.; Multhoff, G.; Shevtsov, M.A. Detection of Magnetosome-Like Structures in Eukaryotic Cells Using Nonlinear Longitudinal Response to ac Field. Appl. Magn. Reson. 2019, 50, 943–957. [Google Scholar] [CrossRef]
- Ryzhov, V.A.; Zavatskii, E.I.; Solov’ev, V.A.; Kiselev, I.A.; Fomichev, V.N.; Bikineev, V.A. Spectrometer for studying broad dipole transitions in magnets and the Hall conductivity at microwave frequencies in conducting materials. Tech. Phys. 1995, 40, 71–78. [Google Scholar]
- Ryzhov, V.A.; Lazuta, A.V.; Smirnov, O.P.; Kiselev, I.A.; Chernenkov, Y.P.; Borisov, S.A.; Troaynchuk, I.O.; Khalyavin, D.D. Neutron diffraction, magnetization, and ESR studies of pseudocubic Nd0.75Ba0.25MnO3 and its critical behavior above TC. Phys. Rev. B 2005, 72, 134427. [Google Scholar] [CrossRef]
- Yudintceva, N.; Mikhailova, N.; Bobkov, D.; Yakovleva, L.; Nikolaev, B.; Krasavina, D.; Muraviov, A.; Vinogradova, T.; Yablonskiy, P.; Samusenko, I.; et al. Evaluation of the Biodistribution of Mesenchymal Stem Cells in a Pre-clinical Renal Tuberculosis Model by Non-linear Magnetic Response Measurements. Front. Phys. 2021, 9, 625622. [Google Scholar] [CrossRef]
- Bedanta, S.; Kleemann, W. Supermagnetism. J. Phys. D Appl. Phys. 2008, 42, 013001. [Google Scholar] [CrossRef]
- Lohße, A.; Borg, S.; Raschdorf, O.; Kolinko, I.; Tompa, É.; Pósfai, M.; Schüler, D. Genetic dissection of the mamAB and mms6 operons reveals a gene set essential for magnetosome biogenesis in Magnetospirillum gryphiswaldense. J. Bacteriol. 2014, 196, 2658–2669. [Google Scholar] [CrossRef]
- Uebe, R.; Schüler, D. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 2016, 14, 621–637. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shimon, S.; Stein, D.; Zarivach, R. Current view of iron biomineralization in magnetotactic bacteria. J. Struct. Biol. X 2021, 5, 100052. [Google Scholar] [CrossRef] [PubMed]
- Klumpp, S.; Kiani, B.; Vach, P.; Faivre, D. Navigation with magnetic nanoparticles: Magnetotactic bacteria and magnetic micro-robots. Phys. Scr. 2015, T165, 014044. [Google Scholar] [CrossRef]
- Klumpp, S.; Faivre, D. Interplay of Magnetic Interactions and Active Movements in the Formation of Magnetosome Chains. PLoS ONE 2012, 7, e33562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurevich, A.G. Magnetic Resonance in Ferrites and Antiferromagnets; “Nauka”: Moskow, Russia, 1973; pp. 100–109. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Culture | “Heavy” Fraction | “Light” Fraction | |||||
---|---|---|---|---|---|---|---|
(10−10 A · m2) | NP (108) | MC (105 μB) | (10−8 A · m2) | NP (1010) | MC (105 μB) | ||
BB-1 | old | 8.60 (46) | 4.45 (28) | 2.08 (7) | 4.19 (29) | 15.6 (1.3) | 0.289 (13) |
new | 5.9 (1.8) | 6.3 (2.2) | 1.01 (18) | 1.8 (4.4) | 14 (41) | 0.14 (21) | |
MSR-1 | old | 12.5 (7) | 9.6 (6) | 1.394 (46) | 2.45 (14) | 7.4 (5) | 0.357 (14) |
new | 1.176 (48) | 0.596 (29) | 2.128 (53) | 0.3069 (45) | 0.670 (11) | 0.4936 (41) | |
LBB-42 | old | 3.14 (37) | 1.79 (24) | 1.89 (12) | 0.55 (6) | 1.63 (22) | 0.366 (28) |
new | 3.25 (9) | 2.47 (8) | 1.421 (23) | 0.576 (10) | 2.124 (42) | 0.2926 (27) | |
AMB-1 | old | 3.91 (33) | 3.03 (29) | 1.39 (7) | 0.94 (11) | 4.3 (6) | 0.235 (13) |
new | 3.1 (7) | 2.3 (6) | 1.46 (18) | 0.6 (5) | 2.9 (3.0) | 0.23 (13) | |
SP-1 | old | 0.50 (15) | 0.15 (1.5) | 3.5 (34) | 0.2039 (38) | 0.251 (5) | 0.875 (10) |
new | 1.65 (39) | 0.87 (23) | 2.04 (25) | 0.344 (24) | 0.79 (7) | 0.467 (27) | |
SO-1 | old | 0.292 (25) | 0.082 (8) | 3.84 (20) | 0.297 (11) | 1.105 (46) | 0.290 (6) |
new | 9 (11) | 12 (3000) | 0 (200) | 0 (0.18) | 0 (3.9) | 0.05 (37) |
Parameters | BB-1 in FSM New | BB-1 in FSM Old | MSR-1 in FSM New | MSR-1 in FSM Old | AMB-1 in MSGM New | AMB-1 in MSGM Old | |
---|---|---|---|---|---|---|---|
Mixing angle, grad | −66 (1) | −36 (4) | −82 (7) | −40 (2) | −41 (4) | −29 (5) | |
Gaussian 2 | g-factor | 3.388 (3) | 4.574 (3) | 2.354 (7) | 4.6 (1) | 4.54 (2) | 4.80 (9) |
Line width Γ, A/m | 11.58 (4) | 18.9 (1.1) | 64.8 (2.6) | 26.7 (1.4) | 19.0 (9) | 25.5 (2.8) | |
Amplitude, arb.un. | 77 (1) | 189 (33) | 470 (60) | 441 (30) | 320 (34) | 230 (35) | |
Gaussian 1 | g-factor | 2.348 (3) | 2.384 (1) | 2.183 (1) | 2.456 (7) | 2.294 (9) | 2.104 (2) |
Line width Γ, A/m | 23.24 (24) | 25.8 (5) | 16.2 (6) | 20.4 (4) | 22.3 (5) | 15.9 (1.6) | |
Amplitude, arb.un. | 134 (2) | 262 (6) | 55 (4) | 176 (10) | 197 (4) | 42 (19) | |
Gaussian 3 | g-factor | 3.376 (4) | 3,04 (1) | 3.00 (4) | |||
Line width Γ, A/m | 7.2 (6) | 6.2 (8) | 12.4 (1.8) | ||||
Amplitude, arb.un. | 11 (2) | 11 (2) | 44 (16) | ||||
Gaussian 4 | g-factor | 2.49 (2) | |||||
Line width Γ, A/m | 10.9 (1.1) | ||||||
Amplitude, arb.un. | 34 (13) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryzhov, V.; Deriglazov, V.; Grouzdev, D.; Koziaeva, V.; Kiselev, I.; Larionov, I.; Gareev, K.; Sitkov, N.; Zimina, T.; Marchenko, Y.; et al. Biogenic Nanomagnetic Carriers Derived from Magnetotactic Bacteria: Magnetic Parameters of Magnetosomes Inside Magnetospirillum spp. Appl. Sci. 2023, 13, 2431. https://doi.org/10.3390/app13042431
Ryzhov V, Deriglazov V, Grouzdev D, Koziaeva V, Kiselev I, Larionov I, Gareev K, Sitkov N, Zimina T, Marchenko Y, et al. Biogenic Nanomagnetic Carriers Derived from Magnetotactic Bacteria: Magnetic Parameters of Magnetosomes Inside Magnetospirillum spp. Applied Sciences. 2023; 13(4):2431. https://doi.org/10.3390/app13042431
Chicago/Turabian StyleRyzhov, Vyacheslav, Vladimir Deriglazov, Denis Grouzdev, Veronika Koziaeva, Igor Kiselev, Ivan Larionov, Kamil Gareev, Nikita Sitkov, Tatiana Zimina, Yaroslav Marchenko, and et al. 2023. "Biogenic Nanomagnetic Carriers Derived from Magnetotactic Bacteria: Magnetic Parameters of Magnetosomes Inside Magnetospirillum spp." Applied Sciences 13, no. 4: 2431. https://doi.org/10.3390/app13042431
APA StyleRyzhov, V., Deriglazov, V., Grouzdev, D., Koziaeva, V., Kiselev, I., Larionov, I., Gareev, K., Sitkov, N., Zimina, T., Marchenko, Y., & Shevtsov, M. (2023). Biogenic Nanomagnetic Carriers Derived from Magnetotactic Bacteria: Magnetic Parameters of Magnetosomes Inside Magnetospirillum spp. Applied Sciences, 13(4), 2431. https://doi.org/10.3390/app13042431