Application of Machine Learning Predictive Models for Early Detection of Glaucoma Using Real World Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Sample
2.2. Data Extraction and Feature Representation
2.3. Data Preprocessing and Temporal Data Modeling
2.4. Machine Learning Models
2.5. Model Performance and Hyperparameter Tuning
3. Results
4. Discussion
4.1. Interpretation and Clinical Relevance
4.2. Limitations of Predictive Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables Name | Description |
---|---|
Gender | Male: 0, Female: 1 |
Cataract | Yes: 1, No: 0 |
Type_one | Yes: 1, No: 0 |
Type_two | Yes: 1, No: 0 |
Hypertension | Yes: 1, No: 0 |
Hypotension | Yes: 1, No: 0 |
Atherosclerosis | Yes: 1, No: 0 |
Lipoid_metabolism_disorder | Yes: 1, No: 0 |
Ischemic_heart_disease | Yes: 1, No: 0 |
Obesity | Yes: 1, No: 0 |
Lacrimal_disorder | Yes: 1, No: 0 |
Multivitamins | Yes: 1, No: 0 |
Steroids | Yes: 1, No: 0 |
Aspirin | Yes: 1, No: 0 |
Allopurinol | Yes: 1, No: 0 |
Atropine | Yes: 1, No: 0 |
Bacitracin | Yes: 1, No: 0 |
Chloramphenicol | Yes: 1, No: 0 |
Gentamicin | Yes: 1, No: 0 |
Gramicidin | Yes: 1, No: 0 |
Phenylephrine | Yes: 1, No: 0 |
Polymyxin | Yes: 1, No: 0 |
Sulfacetamide | Yes: 1, No: 0 |
Abnormal_glucose > 150 | Yes: 1, No: 0 |
Bmi_high > 25 | Yes: 1, No: 0 |
Glaucoma | Yes: 1, No: 0 |
African_american | Yes: 1, No: 0 |
Asian | Yes: 1, No: 0 |
Caucasian | Yes: 1, No: 0 |
Hispanic | Yes: 1, No: 0 |
Native_american | Yes: 1, No: 0 |
Others | Yes: 1, No: 0 |
Appendix B
Random Forest | Logistic Regression | ||||
---|---|---|---|---|---|
Variable | Importance | Variable | Coef | ||
0 | bmi_high | 0.133672 | 0 | gender | 0.540924 |
1 | abnormal_glucose | 0.093242 | 1 | gentamicin | 0.489303 |
2 | cataract | 0.068141 | 2 | obesity | 0.329181 |
3 | caucasian | 0.057031 | 3 | atherosclerosis | 0.295286 |
4 | hypertension | 0.056665 | 4 | multivitamins | 0.234677 |
5 | lipoid_metabolism_disorder | 0.047942 | 5 | cataract | 0.20598 |
6 | steroids | 0.047653 | 6 | hypotension | 0.091375 |
7 | phenylephrine | 0.04337 | 7 | lacrimal_disorder | 0.014897 |
8 | gender | 0.041951 | 8 | lipoid_metabolism_disorder | −0.034049 |
9 | type_two | 0.041583 | 9 | steroids | −0.048018 |
10 | obesity | 0.035984 | 10 | allopurinol | −0.071397 |
11 | aspirin | 0.035866 | 11 | ischemic_heart_disease | −0.11569 |
12 | ischemic_heart_disease | 0.030035 | 12 | aspirin | −0.119863 |
13 | gentamicin | 0.028629 | 13 | bacitracin | −0.122621 |
14 | lacrimal_disorder | 0.027897 | 14 | type_two | −0.149788 |
15 | asian | 0.027581 | 15 | type_one | −0.197948 |
16 | atropine | 0.026235 | 16 | polymyxin | −0.425122 |
17 | multivitamins | 0.023966 | 17 | hypertension | −0.539789 |
18 | african_american | 0.022628 | 18 | abnormal_glucose | −0.865936 |
19 | bacitracin | 0.022618 | 19 | atropine | −0.971731 |
20 | hypotension | 0.018316 | 20 | phenylephrine | −1.107889 |
21 | polymyxin | 0.018084 | 21 | asian | −1.163533 |
22 | atherosclerosis | 0.014749 | 22 | bmi_high | −1.692346 |
23 | type_one | 0.012155 | 23 | hispanic | −2.216769 |
24 | hispanic | 0.010955 | 24 | african_american | −2.672737 |
25 | allopurinol | 0.008204 | 25 | others | −2.794777 |
26 | others | 0.00485 | 26 | caucasian | −3.364577 |
References
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Stevens, G.A.; White, R.A.; Flaxman, S.R.; Price, H.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; Pesudovs, K.; Resnikoff, S.; et al. Global prevalence of vision impairment and blindness: Magnitude and temporal trends, 1990–2010. Ophthalmology 2013, 120, 2377–2384. [Google Scholar] [CrossRef] [PubMed]
- Malihi, M.; Moura Filho, E.R.; Hodge, D.O.; Sit, A.J. Long-term trends in glaucoma-related blindness in Olmsted County, Minnesota. Ophthalmology 2014, 121, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Bourne, R.R.; Stevens, G.A.; White, R.A.; Smith, J.L.; Flaxman, S.R.; Price, H.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; et al. Causes of vision loss worldwide, 1990–2010: A systematic analysis. Lancet Glob. Health 2013, 1, e339–e349. [Google Scholar] [CrossRef]
- Rylander, N.R.; Vold, S.D. Cost analysis of glaucoma medications. Am. J. Ophthalmol. 2008, 145, 106–113. [Google Scholar] [CrossRef]
- Rouland, J.-F.; Berdeaux, G.; Lafuma, A. The economic burden of glaucoma and ocular hypertension. Drugs Aging 2005, 22, 315–321. [Google Scholar] [CrossRef]
- Howdon, D.; Rice, N. Health care expenditures, age, proximity to death and morbidity: Implications for an aging population. J. Health Econ. 2018, 57, 60–74. [Google Scholar] [CrossRef]
- Medeiros, F.A.; Lisboa, R.; Weinreb, R.N.; Liebmann, J.M.; Girkin, C.; Zangwill, L.M. Retinal ganglion cell count estimates associated with the early development of visual field defects in glaucoma. Ophthalmology 2013, 120, 736–744. [Google Scholar] [CrossRef]
- Na, J.H.; Lee, K.; Lee, J.R.; Baek, S.; Yoo, S.J.; Kook, M.S. Detection of macular ganglion cell loss in preperimetric glaucoma patients with localized retinal nerve fiber defects by spectral-domain optical coherence tomography. Clin. Exp. Ophthalmol. 2013, 41, 870–880. [Google Scholar] [CrossRef]
- Lisboa, R.; Leite, M.T.; Zangwill, L.M.; Tafreshi, A.; Weinreb, R.N.; Medeiros, F.A. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology 2012, 119, 2261–2269. [Google Scholar] [CrossRef] [Green Version]
- Mantravadi, A.V.; Vadhar, N. Glaucoma. Prim. Care 2015, 42, 437–449. [Google Scholar] [CrossRef]
- Harasymowycz, P.; Birt, C.; Gooi, P.; Heckler, L.; Hutnik, C.; Jinapriya, D.; Shuba, L.; Yan, D.; Day, R. Medical Management of Glaucoma in the 21st Century from a Canadian Perspective. J. Ophthalmol. 2016, 2016, 6509809. [Google Scholar] [CrossRef]
- Katz, J.; Sommer, A. Risk factors for primary open angle glaucoma. Am. J. Prev. Med. 1988, 4, 110–114. [Google Scholar] [CrossRef]
- Deokule, S.; Weinreb, R.N. Relationships among systemic blood pressure, intraocular pressure, and open-angle glaucoma. Can. J. Ophthalmol. 2008, 43, 302–307. [Google Scholar] [CrossRef]
- Dielemans, I.; Vingerling, J.R.; Algra, D.; Hofman, A.; Grobbee, D.E.; de Jong, P.T. Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study. Ophthalmology 1995, 102, 54–60. [Google Scholar] [CrossRef]
- Bonomi, L.; Marchini, G.; Marraffa, M.; Bernardi, P.; Morbio, R.; Varotto, A. Vascular risk factors for primary open angle glaucoma: The Egna-Neumarkt Study. Ophthalmology 2000, 107, 1287–1293. [Google Scholar] [CrossRef]
- Safran, C.; Bloomrosen, M.; Hammond, W.E.; Labkoff, S.; Markel-Fox, S.; Tang, P.C.; Detmer, D.E.; Expert, P. Toward a national framework for the secondary use of health data: An American Medical Informatics Association White Paper. J. Am. Med. Inf. Assoc. 2007, 14, 1–9. [Google Scholar] [CrossRef]
- Kuperman, G.J.; Bobb, A.; Payne, T.H.; Avery, A.J.; Gandhi, T.K.; Burns, G.; Classen, D.C.; Bates, D.W. Medication-related clinical decision support in computerized provider order entry systems: A review. J. Am. Med. Inf. Assoc. 2007, 14, 29–40. [Google Scholar] [CrossRef]
- Jiang, M.; Chen, Y.; Liu, M.; Rosenbloom, S.T.; Mani, S.; Denny, J.C.; Xu, H. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J. Am. Med. Inf. Assoc. 2011, 18, 601–606. [Google Scholar] [CrossRef]
- Persell, S.D.; Dunne, A.P.; Lloyd-Jones, D.M.; Baker, D.W. Electronic health record-based cardiac risk assessment and identification of unmet preventive needs. Med. Care 2009, 47, 418–424. [Google Scholar] [CrossRef]
- Kononenko, I. Machine learning for medical diagnosis: History, state of the art and perspective. Artif. Intell. Med. 2001, 23, 89–109. [Google Scholar] [CrossRef] [PubMed]
- Bertsimas, D.; Bjarnadóttir, M.V.; Kane, M.A.; Kryder, J.C.; Pandey, R.; Vempala, S.; Wang, G. Algorithmic prediction of healthcare costs. Oper. Res. 2008, 56, 1382–1392. [Google Scholar] [CrossRef]
- Akter, N.; Fletcher, J.; Perry, S.; Simunovic, M.P.; Briggs, N.; Roy, M. Glaucoma diagnosis using multi-feature analysis and a deep learning technique. Sci. Rep. 2022, 12, 8064. [Google Scholar] [CrossRef]
- Saleh, E.; Blaszczynski, J.; Moreno, A.; Valls, A.; Romero-Aroca, P.; de la Riva-Fernandez, S.; Slowinski, R. Learning ensemble classifiers for diabetic retinopathy assessment. Artif. Intell. Med. 2018, 85, 50–63. [Google Scholar] [CrossRef]
- Fraccaro, P.; Nicolo, M.; Bonetto, M.; Giacomini, M.; Weller, P.; Traverso, C.E.; Prosperi, M.; OSullivan, D. Combining macula clinical signs and patient characteristics for age-related macular degeneration diagnosis: A machine learning approach. BMC Ophthalmol. 2015, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Omkar, G.K.; Elaine, W.G.; David, F.; Landon, G. Evaluating machine learning classifers for glaucoma referral decision support in primary care settings. Sci. Rep. 2022, 12, 8518. [Google Scholar]
- Lundström, M.; Goh, P.-P.; Henry, Y.; Salowi, M.A.; Barry, P.; Manning, S.; Rosen, P.; Stenevi, U. The changing pattern of cataract surgery indications: A 5-year study of 2 cataract surgery databases. Ophthalmology 2015, 122, 31–38. [Google Scholar] [CrossRef]
- Lundström, M.; Barry, P.; Henry, Y.; Rosen, P.; Stenevi, U. Visual outcome of cataract surgery; study from the European Registry of Quality Outcomes for Cataract and Refractive Surgery. J. Cataract. Refract. Surg. 2013, 39, 673–679. [Google Scholar] [CrossRef]
- Almazroa, A.; Alodhayb, S.; Raahemifar, K.; Lakshminarayanan, V. An automatic image processing system for glaucoma screening. Int. J. Biomed. Imaging 2017, 2017, 4826385. [Google Scholar] [CrossRef]
- Bragança, C.P.; Torres, J.M.; Soares, C.P.; Macedo, L.O. Detection of Glaucoma on Fundus Images Using Deep Learning on a New Image Set Obtained with a Smartphone and Handheld Ophthalmoscope. Healthcare 2022, 10, 2345. [Google Scholar] [CrossRef]
- Baxter, S.L.; Marks, C.; Kuo, T.T.; Ohno-Machado, L.; Weinreb, R.N. Machine Learning-Based Predictive Modeling of Surgical Intervention in Glaucoma Using Systemic Data From Electronic Health Records. Am. J. Ophthalmol. 2019, 208, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Raju, M.; Chisholm, M.; Mosa, A.S.; Shyu, C.R.; Faunfelder, F.W. Investigating Risk Factors for Cataract Using the Cerner Health Facts Database. J. Eye Cataract. Surg. 2017, 3, 1–6. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013; Volume 26. [Google Scholar]
- Chatterjee, A.; Gerdes, M.W.; Martinez, S.G. Identification of Risk Factors Associated with Obesity and Overweight-A Machine Learning Overview. Sensors 2020, 20, 2734. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.A.; Liu, N.; Wu, S.X.; Shen, Y.; Lam, S.S.W.; Ong, M.E.H. Predicting hospital admission at the emergency department triage: A novel prediction model. Am. J. Emerg. Med. 2019, 37, 1498–1504. [Google Scholar] [CrossRef]
- Mowbray, F.; Zargoush, M.; Jones, A.; de Wit, K.; Costa, A. Predicting hospital admission for older emergency department patients: Insights from machine learning. Int. J. Med. Inf. 2020, 140, 104163. [Google Scholar] [CrossRef]
- McMonnies, C.W. Glaucoma history and risk factors. J. Optom. 2017, 10, 71–78. [Google Scholar] [CrossRef]
- Buys, Y.M.; Gaspo, R.; Kwok, K. Canadian Glaucoma Risk Factor Study G: Referral source, symptoms, and severity at diagnosis of ocular hypertension or open-angle glaucoma in various practices. Can. J. Ophthalmol. 2012, 47, 217–222. [Google Scholar] [CrossRef]
- Sramka, M.; Slovak, M.; Tuckova, J.; Stodulka, P. Improving clinical refractive results of cataract surgery by machine learning. PeerJ 2019, 7, e7202. [Google Scholar] [CrossRef]
- Lin, H.; Long, E.; Ding, X.; Diao, H.; Chen, Z.; Liu, R.; Huang, J.; Cai, J.; Xu, S.; Zhang, X.; et al. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study. PLoS Med. 2018, 15, e1002674. [Google Scholar] [CrossRef]
- Gajare, S.; Sonawani, S. Improved logistic regression approach in feature selection for EHR. In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2020; Volume 940, pp. 325–334. [Google Scholar]
- Ting, D.S.W.; Peng, L.; Varadarajan, A.V.; Keane, P.A.; Burlina, P.M.; Chiang, M.F.; Schmetterer, L.; Pasquale, L.R.; Bressler, N.M.; Webster, D.R.; et al. Deep learning in ophthalmology: The technical and clinical considerations. Prog. Retin. Eye Res. 2019, 72, 100759. [Google Scholar] [CrossRef]
- Hampton, J.R.; Harrison, M.J.; Mitchell, J.R.; Prichard, J.S.; Seymour, C. Relative contributions of history-taking, physical examination, and laboratory investigation to diagnosis and management of medical outpatients. Br. Med. J. 1975, 2, 486–489. [Google Scholar] [CrossRef] [Green Version]
- Collins, D.W.; Gudiseva, H.V.; Chavali, V.R.; Trachtman, B.; Ramakrishnan, M.; Merritt, I.I.I.W.T.; Pistilli, M.; Rossi, R.A.; Blachon, S.; Sankar, P.S.; et al. The MT-CO1 V83I Polymorphism is a Risk Factor for Primary Open-Angle Glaucoma in African American Men. Invest. Ophthalmol. Vis. Sci. 2018, 59, 1751–1759. [Google Scholar] [CrossRef]
- Mei, J.; Xia, E. Knowledge learning symbiosis for developing risk prediction models from regional EHR repositories. Stud. Health Technol. Inform. 2019, 264, 258–262. [Google Scholar]
- Leite, D.; Campelos, M.; Fernandes, A.; Batista, P.; Beirao, J.; Menere, P.; Cunha, A. Machine Learning automatic assessment for glaucoma and myopia based on Corvis ST data. Procedia Comput. Sci. 2022, 196, 454–460. [Google Scholar] [CrossRef]
Learning Model | Loss Function | Parameter Estimation | Complexity Reduction |
---|---|---|---|
Logistic Regression | Log loss | Gradient descent | L2 regularization |
XGBoost classifier | Squared error | Booster parameters | Regression |
Random Forest | Square loss: (Y-Y) 2 | CART | Move down tree based on x predict value at the leaf |
MLP Classifier | Activation: relu | Solver: adam | Learning rate init = 0.001 |
Model | Prediction | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|
LR | 0 | 0.7830 | 0.6341 | 0.7007 | 0.7281 |
1 | 0.6904 | 0.8228 | 0.7508 | ||
RF | 0 | 0.7911 | 0.8427 | 0.8161 | 0.8105 |
1 | 0.8308 | 0.7763 | 0.8024 | ||
XGB | 0 | 0.8033 | 0.8386 | 0.8026 | 0.8161 |
1 | 0.8302 | 0.7936 | 0.8115 | ||
MLP | 0 | 0.8086 | 0.8259 | 0.8171 | 0.8146 |
1 | 0.8210 | 0.8033 | 0.8121 |
Model | TP | FP | FN | TN | Accuracy |
---|---|---|---|---|---|
LR | 2140 | 1235 | 593 | 2754 | 0.7281 |
RF | 2840 | 530 | 750 | 2602 | 0.8096 |
XGB | 2826 | 544 | 692 | 2660 | 0.8161 |
MLP | 2784 | 587 | 659 | 2692 | 0.8146 |
Crude OR (95%CI) | Adj. OR (95%CI) | P (Wald’s Test) | P (LR-Test) | |
---|---|---|---|---|
Cataract | 1.19 (1.13,1.25) | 1.36 (1.28,1.43) | <0.001 | <0.001 |
Atherosclerosis | 0.73 (0.66,0.81) | 1.2 (1.07,1.34) | 0.001 | 0.001 |
Type 2 diabetics | 0.8 (0.77,0.84) | 1.14 (1.08,1.21) | <0.001 | <0.001 |
Obesity | 0.89 (0.84,0.94) | 1.14 (1.07,1.21) | <0.001 | <0.001 |
Lacrimal disorder | 1.28 (1.17,1.4) | 1.14 (1.03,1.26) | 0.008 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raju, M.; Shanmugam, K.P.; Shyu, C.-R. Application of Machine Learning Predictive Models for Early Detection of Glaucoma Using Real World Data. Appl. Sci. 2023, 13, 2445. https://doi.org/10.3390/app13042445
Raju M, Shanmugam KP, Shyu C-R. Application of Machine Learning Predictive Models for Early Detection of Glaucoma Using Real World Data. Applied Sciences. 2023; 13(4):2445. https://doi.org/10.3390/app13042445
Chicago/Turabian StyleRaju, Murugesan, Krishna P. Shanmugam, and Chi-Ren Shyu. 2023. "Application of Machine Learning Predictive Models for Early Detection of Glaucoma Using Real World Data" Applied Sciences 13, no. 4: 2445. https://doi.org/10.3390/app13042445
APA StyleRaju, M., Shanmugam, K. P., & Shyu, C. -R. (2023). Application of Machine Learning Predictive Models for Early Detection of Glaucoma Using Real World Data. Applied Sciences, 13(4), 2445. https://doi.org/10.3390/app13042445