Phase Shifting Enhancement of a Substrate-Integrated Waveguide Phase Shifter Based on Liquid Crystal
Abstract
:1. Introduction
2. Fundamentals of Liquid Crystals for Microwave Applications
3. Inductive Posts in the LC-Based SIW Phase Shifter
4. LC-Based SIW Phase Shifter Design
4.1. Structure
4.2. Biasing System
5. Results and Discussion
5.1. Phase Advance by IP
5.2. Enhanced Phase Shifting Range by Inserting IPs
5.3. LC-Based SIW Phase Shifter
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naqvi, A.H.; Lim, S. Review of Recent Phased Arrays for Millimeter—Wave Wireless Communication. Sensors 2018, 18, 3194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Hong, W.; Zhang, H.; Wang, G.; Yu, Y.; Jiang, Z.H. An Array Antenna for Both Long-and Medium-Range 77 GHz Automotive Radar Applications. IEEE Trans. Antennas Propag. 2017, 65, 7207–7216. [Google Scholar] [CrossRef]
- Biglarbegian, B.; Nezhad-Ahmadi, M.R.; Fakharzadeh, M.; Safavi-Naeini, S. Millimeter-Wave Reflective-Type Phase Shifter in CMOS Technology. IEEE Microw. Wirel. Components Lett. 2009, 19, 560–562. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Kim, W.; Ma, J.-S.; Shin, H.-J. Reconfigurable Phased Array Antenna Based on Liquid Crystal with Miniaturized Bandpass Filter. In Proceedings of the 2022 International Symposium on Antennas and Propagation, Sydney, Australia, 31 October–3 November 2022. [Google Scholar] [CrossRef]
- Li, J.; Shu, R.; Gu, Q.J. 10 GHz CMOS hybrid reflective-type phase shifter with enhanced phase shifting range. Electron. Lett. 2015, 51, 1935–1937. [Google Scholar] [CrossRef] [Green Version]
- McFeetors, G.; Okoniewski, M. Distributed MEMS analog phase shifter with enhanced tuning. IEEE Microw. Wirel. Components Lett. 2005, 16, 34–36. [Google Scholar] [CrossRef]
- Garbovskiy, Y.; Zagorodnii, V.; Krivosik, P.; Lovejoy, J.; Camley, R.E.; Celinski, Z.; Glushchenko, A.; Dziaduszek, J.; Dąbrowski, R. Liquid crystal phase shifters at millimeter wave frequencies. J. Appl. Phys. 2012, 111, 054504. [Google Scholar] [CrossRef]
- Lim, K.C.; Margerum, J.D.; Lackner, A.M. Liquid crystal millimeter wave electronic phase shifter. Appl. Phys. Lett. 1993, 62, 1065–1067. [Google Scholar] [CrossRef]
- Schadt, M. Liquid crystal materials and liquid crystal displays. Annu. Rev. Mater. Sci. 1997, 27, 305–379. [Google Scholar] [CrossRef] [Green Version]
- Goelden, F.; Gaebler, A.; Goebel, M.; Manabe, A.; Mueller, S.; Jakoby, R. Tunable liquid crystal phase shifter for microwave frequencies. Electron. Lett. 2009, 45, 686–687. [Google Scholar] [CrossRef]
- Weil, C.; Luessem, G.; Jakoby, R. Tunable inverted-microstrip phase shifter device using nematic liquid crystals. In Proceedings of the 2002 IEEE MTT-S International Microwave Symposium Digest, Seattle, WA, USA, 2–7 June 2002; pp. 367–371. [Google Scholar] [CrossRef]
- Li, J.; Chu, D. Liquid Crystal-Based Enclosed Coplanar Waveguide Phase Shifter for 54–66 GHz Applications. Crystals 2019, 9, 650. [Google Scholar] [CrossRef] [Green Version]
- Strunck, S.; Gaebler, A.; Karabey, O.H.; Heunisch, A.; Schulz, B.; Rabe, T.; Follmann, R.; Kassner, J.; Koether, D.; Manabe, A.; et al. Reliability study of a tunable Ka-band SIW-phase shifter based on liquid crystal in LTCC-technology. Int. J. Microw. Wirel. Technol. 2014, 7, 521–527. [Google Scholar] [CrossRef]
- Garg, R.; Bahl, I.; Bozzi, M. Microstrip Lines and Slotlines, 3rd ed.; Artech House: Boston, MA, USA, 2013; pp. 497–498. [Google Scholar]
- Wang, K.; Wu, K. Liquid crystal enabled substrate integrated waveguide variable phase shifter for millimeter-wave application at 60ghz and beyond. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Prasetiadi, A.E.; Rahmawati, S.; Weickhmann, C.; Nickel, M.; Jost, M.; Franke, T.; Hu, W.; Maune, H.; Jakoby, R. Electrical biasing scheme for Liquid-Crystal-based tunable Substrate Integrated Waveguide structures. In Proceedings of the 2016 German Microwave Conference, Bochum, Germany, 14–16 March 2016; pp. 136–139. [Google Scholar] [CrossRef]
- Abdellatif, A.S.; Faraji-Dana, M.; Ranjkesh, N.; Taeb, A.; Fahimnia, M.; Gigoyan, S.; Safavi-Naeini, S. Low Loss, Wideband, and Compact CPW-Based Phase Shifter for Millimeter-Wave Applications. IEEE Trans. Microw. Theory Tech. 2014, 62, 3403–3413. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Fan, Y. Millimeter-Wave Miniaturized Substrate Integrated Multibeam Antenna. IEEE Trans. Antennas Propag. 2011, 59, 4840–4844. [Google Scholar] [CrossRef]
- Marcuvitz, N. Waveguide Handbook, 1st ed.; McGraw Hill: New York, NY, USA, 1951; pp. 257–258. [Google Scholar]
- Yang, D.K.; Wu, S.T. Fundamentals of Liquid Crystal Devices, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2014; pp. 27–37. [Google Scholar]
- Ma, J.S.; Choi, J.Y.; Shin, H.J.; Lee, J.H.; Oh, S.W.; Kim, W.S. An Evaluation of Surface-Active Agxadecyltrimethylammonent Heium Bromide with Vertical Self-Alignment Properties to Align Liquid Crystals for Various Cell Gap Conditions. Appl. Sci. 2022, 12, 12582. [Google Scholar] [CrossRef]
- Yaghmaee, P.; Karabey, O.H.; Bates, B.; Fumeaux, C.; Jakoby, R. Electrically Tuned Microwave Devices Using Liquid Crystal Technology. Int. J. Antennas Propag. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sellal, K.; Talbi, L.; Denidni, T.; Lebel, J. Design and implementation of a substrate integrated waveguide phase shifter. IET Microwaves, Antennas Propag. 2008, 2, 194–199. [Google Scholar] [CrossRef]
- Boudreau, I.; Wu, K.; Deslandes, D. Broadband phase shifter using air holes in Substrate Integrated Waveguide. In Proceedings of the 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA, 5–10 June 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Yang, T.; Ettorre, M.; Sauleau, R. Novel Phase Shifter Design Based on Substrate-Integrated-Waveguide Technology. IEEE Microw. Wirel. Components Lett. 2012, 22, 518–520. [Google Scholar] [CrossRef]
- Chen, X.-P.; Wu, K. Low-loss ultra-wideband transition between conductor-backed coplanar waveguide and substrate integrated waveguide. In Proceedings of the 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 7–12 June 2009; pp. 349–352. [Google Scholar] [CrossRef]
- Kazemi, R.; Fathy, A.E.; Yang, S.; Sadeghzadeh, R.A. Development of an ultra wide band GCPW to SIW transition. In Proceedings of the 2012 IEEE Radio and Wireless Symposium, Santa Clara, CA, USA, 15–18 January 2012; pp. 171–174. [Google Scholar] [CrossRef]
- Garg, R.; Bhartia, P.; Bahl, I.J.; Ittipiboon, A. Microstrip Antenna Design Handbook; Artech House: Boston, MA, USA, 2001; pp. 789–792. [Google Scholar]
- Simons, R.N. Coplanar Waveguide Circuits, Components, and Systems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Jost, M.; Strunck, S.; Heunisch, A.; Wiens, A.; Prasetiadi, A.E.; Weickhmann, C.; Schulz, B.; Quibeldey, M.; Karabey, O.H.; Rabe, T.; et al. Continuously tuneable liquid crystal based stripline phase shifter realised in LTCC technology. In Proceedings of the 2015 European Microwave Conference, Paris, France, 7–10 September 2015; pp. 1260–1263. [Google Scholar] [CrossRef]
- Muller, S.; Scheele, P.; Weil, C.; Wittek, M.; Hock, C.; Jakoby, R. Tunable passive phase shifter for microwave applications using highly anisotropic liquid crystals. In Proceedings of the 2004 IEEE MTT-S International Microwave Symposium Digest, Fort Worth, TX, USA, 6–11 June 2004. [Google Scholar] [CrossRef]
- Kim, H.Y.; Ge, Z.; Wu, S.-T.; Lee, S.H. Wide-view transflective liquid crystal display for mobile applications. Appl. Phys. Lett. 2007, 91, 231108. [Google Scholar] [CrossRef] [Green Version]
- Jiao, M.; Wu, S.-T.; Choi, W.-K. Fast-Response Single Cell Gap Transflective Liquid Crystal Displays. J. Disp. Technol. 2009, 5, 83–85. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.-S.; Choi, J.-Y.; Oh, S.-W.; Kim, W.-S. Liquid-crystal-based floating-electrode-free coplanar waveguide phase shifter with an additional liquid-crystal layer for 28-GHz applications. J. Phys. D Appl. Phys. 2022, 55, 095106. [Google Scholar] [CrossRef]
- Sazegar, M.; Zheng, Y.; Maune, H.; Damm, C.; Zhou, X.; Binder, J.; Jakoby, R. Low-Cost Phased-Array Antenna Using Compact Tunable Phase Shifters Based on Ferroelectric Ceramics. IEEE Trans. Microw. Theory Tech. 2011, 59, 1265–1273. [Google Scholar] [CrossRef]
- Antoniades, M.; Eleftheriades, G. Compact linear lead/lag metamaterial phase shifters for broadband applications. IEEE Antennas Wirel. Propag. Lett. 2003, 2, 103–106. [Google Scholar] [CrossRef]
- Franc, A.-L.; Karabey, O.H.; Rehder, G.; Pistono, E.; Jakoby, R.; Ferrari, P. Compact and Broadband Millimeter-Wave Electrically Tunable Phase Shifter Combining Slow-Wave Effect with Liquid Crystal Technology. IEEE Trans. Microw. Theory Tech. 2013, 61, 3905–3915. [Google Scholar] [CrossRef]
Topology | Amount of LC (mm3) | Maximum Insertion Loss (dB) | Maximum Differential Phase Shift (°) | FoM1 (°/dB) | FoM2 (°/mm) |
---|---|---|---|---|---|
Proposed structure | 17.5 | 1.1 | 58.1 | 52.82 | 2.62 |
Case 1 | 17.5 | 0.82 | 37.32 | 45.51 | 1.69 |
Case 2 | 25 | 0.8 | 47.68 | 56.76 | 2.16 |
Topology | Proposed Structure | Case 1 |
---|---|---|
Length required to achieve 180° differential phase shift (mm) | 68.7 | 106.5 |
Topology | Proposed Structure | Case 2 |
---|---|---|
Amount of LC required achieve 180° differential phase shift (mm3) | 54.2 | 94.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.-J.; Ma, J.-S.; Choi, J.-Y.; Kim, W.-S. Phase Shifting Enhancement of a Substrate-Integrated Waveguide Phase Shifter Based on Liquid Crystal. Appl. Sci. 2023, 13, 2504. https://doi.org/10.3390/app13042504
Shin H-J, Ma J-S, Choi J-Y, Kim W-S. Phase Shifting Enhancement of a Substrate-Integrated Waveguide Phase Shifter Based on Liquid Crystal. Applied Sciences. 2023; 13(4):2504. https://doi.org/10.3390/app13042504
Chicago/Turabian StyleShin, Hyun-Ji, Jun-Seok Ma, Jin-Young Choi, and Wook-Sung Kim. 2023. "Phase Shifting Enhancement of a Substrate-Integrated Waveguide Phase Shifter Based on Liquid Crystal" Applied Sciences 13, no. 4: 2504. https://doi.org/10.3390/app13042504
APA StyleShin, H. -J., Ma, J. -S., Choi, J. -Y., & Kim, W. -S. (2023). Phase Shifting Enhancement of a Substrate-Integrated Waveguide Phase Shifter Based on Liquid Crystal. Applied Sciences, 13(4), 2504. https://doi.org/10.3390/app13042504