Comparison of the Spreadability of Butter and Butter Substitutes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Texture Characteristics of Butter and Butter Substitutes
2.3. Physicochemical Properties of Butter and Butter Substitutes
2.4. Additional Characteristics of Butter Milk Fat
2.5. Statistical Analysis
3. Results and Discussion
3.1. Texture Characteristics of Butter and Butter Substitutes
3.2. Physicochemical Properties of Butter and Butter Substitutes
3.3. Additional Characteristics of Butter Milk Fat
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dickinson, E. New Physico-techniques for the Characterisation of Complex Food Systems; Blackie Academic and Professional: London, UK, 1995; pp. 117–146. [Google Scholar]
- Jakubczyk, E.; Gondek, E.; Samborska, K. Texture characteristics of selected fat blends. Zesz. Probl. Post Nauk. Roln. 2014, 579, 17–26. (In Polish) [Google Scholar]
- Campos, R.; Narine, S.S.; Marangoni, A.G. Effect of Cooling Rate on the Structure and Mechanical Properties of Milk Fat and Lard. Food Res. Int. 2002, 3510, 971–981. [Google Scholar] [CrossRef]
- Brown, W.; Langley, K.R.; Martin, A.; MacFie, H.J.H. Characterisation of Patterns of Chewing Behaviour in Human Subjects and Their Influence on Texture Perception. J. Texture Stud. 1994, 25, 455–469. [Google Scholar] [CrossRef]
- Rohm, H.; Ulberth, F. Use of Magnitude Estimation in Sensory Texture Analysis of Butter. J. Texture Stud. 2007, 20, 409–418. [Google Scholar] [CrossRef]
- Kim, B.H.; Akoh, C.C. A healthy cold-spreadable butter. Nutrition 2006, 17, 547–548. [Google Scholar]
- Schäffer, B.; Szakaly, S.; Lőrniczy, D. Butter fat melting properties and butter consistency. Effect of cream ripening and modification of fatty acid composition. Therm. Anal. Color J. 2001, 64, 659–669. [Google Scholar] [CrossRef]
- Schäffer, B.; Szakály, S.; Lőrinczy, D. Melting Properties of Butter Fat and The Consistency of Butter. Effect of modification of cream ripening and fatty acid composition. J. Therm. Anal. Cal. 2001, 64, 659–669. [Google Scholar] [CrossRef]
- Schäffer, B.; Szakály, S. Structure of butter. 2. Influence of technological modification of the liquid/solid fat ratio on butter consistency. Milchwissenschaft 1988, 43, 561–564. [Google Scholar]
- Vithanage, C.R.; Grimson, M.J.; Smith, B.G. The Effect of Temperature on the Rheology of Butter, A Spreadable Blend and Spreads. J. Texture Stud. 2009, 40, 346–369. [Google Scholar] [CrossRef]
- Rousseau, D.; Marangoni, A.G. Tailoring the textural attributes of butter fat/canola oil blends via Rhizopus arrhizus lipase-catalyzed interesterification. 2. Modifications of physical properties. J. Agricult Food Chem. 1998, 46, 2375–2381. [Google Scholar] [CrossRef]
- Tang, D.; Marangoni, A.G. Modeling the Rheological Properties and Structure of Colloidal Fat Crystal Networks. Food Sci. Technol. 2007, 18, 474–483. [Google Scholar] [CrossRef]
- Kleyn, D.H. Textural Aspects of Butter. Food Tech. 1992, 46, 118–121. [Google Scholar]
- Wright, A.J.; Scanlon, M.G.; Hartel, R.W.; Marangoni, A.G. Rheological Properties of Milk Fat and Butter. J. Food Sci. 2001, 66, 1056–1071. [Google Scholar] [CrossRef]
- Fearon, A.M. Optimising Milk Fat Composition and Processing Properties. Aust J. Dairy Tech. 2001, 2, 104–108. [Google Scholar]
- Rousseau, D.; Gosh, S.; Park, H. Comparison of the Dispersed Phase Coalescence Mechanisms in Different Table Spreads. J. Food Sci. 2009, 74, 1–7. [Google Scholar] [CrossRef]
- Rønholt, S.; Kirkensgaard, J.J.K.; Pedersen, T.B.; Mortensen, K.; Knudsen, J.C. Polymorphism, Microstructure and Rheology of Butter. Effects of Cream Heat Treatment. Food Chem. 2012, 135, 1730–1739. [Google Scholar] [CrossRef]
- Tondhoosh, A.; Nayebzadeh, K.; Mohamadifar, M.A.; Homayouni-Rad, A.; Hosseinoghli, H. Industrial Application of Different Heat Treatments and Cream Fat Contents for Improving the Spreadability of Butter. Recent Pat. Food Nutr. Agric. 2016, 8, 107–115. [Google Scholar] [CrossRef]
- Lee, J.; Martini, S. Effect of Cream Aging Temperature and Agitation on Butter Properties. J. Dairy Sci. 2018, 101, 7724–7735. [Google Scholar] [CrossRef]
- Jaworska, D.; Świderski, F.; Janicki, A. Ocena tekstury tłuszczów do smarowania pieczywa przy użyciu analizatora tekstury TA.XT2i. Przem Spoz. 2003, 57, 17–19. [Google Scholar]
- Piska, I.; Zárubová, M.; Loužeckỳ, T.; Karami, H.; Filip, W. Properties and Crystallization of Fat Blends. J. Food Eng. 2006, 77, 433–438. [Google Scholar] [CrossRef]
- Litz, B.; Obert, G.; Szily, B. Examination of the Correlation of Butter Spreadability and its Fat Conformation by DSC. J. Therm. Anal. Calor 2006, 84, 425–428. [Google Scholar] [CrossRef]
- Glibowski, P. Effect of vegetable oils on the texture of anhydrous milk fat. Acta Agroph 2007, 9, 603–612. (In Polish) [Google Scholar]
- Siemianowski, K.; Satniewski, B.; Markiewicz, K. Comparison of the texture and microstructure of butter and fat blends available on the Polish market. Przegl Mlecz 2010, 10, 4–7. (In Polish) [Google Scholar]
- Kaufmann, N.; Andersen, U.; Wiking, L. The Effect of Cooling Rate and Rapeseed Oil Addition on the Melting Behaviour, Texture and Microstructure of Anhydrous Milk Fat. Int. Dairy J. 2012, 25, 73–79. [Google Scholar] [CrossRef]
- Lis, A.; Staniewski, B.; Ziajka, J. A comparison of butter texture measurements with the AP 4/2 penetrometer and TA.XT. Plus texture analyzer. Int. J. Food Prop. 2021, 24, 1744–1757. [Google Scholar] [CrossRef]
- Narine, S.S.; Maranongi, A.G. Elastic Modulus as an Indicator of Macroscopic Hardness Fat Crystal Networks. Lebensm.-Wiss. U.-Technol. 2001, 34, 33–40. [Google Scholar] [CrossRef]
- Bourne, M.C. Texture, Viscosity, and Food, Chapter 1. In Food Texture and Viscosity: Concept and Measuremen, 2nd ed.; Academic Press: New York, NY, USA, 2002; pp. 1–33. [Google Scholar]
- Dixon, B.D. Spreadability of Butter: Determination. 1. Description and Comparison of Five Methods of Testing. Aust J. Dairy Tech. 1974, 29, 15–22. [Google Scholar]
- Bobe, G.; Hammond, E.G.; Freeman, A.E.; Lindberg, G.L.; Beitz, D.C. Texture of butter from cows with different milk fatty acid compositions. J. Dairy Sci. 2003, 86, 3122–3127. [Google Scholar] [CrossRef]
- Glibowski, P.; Zarzycki, P.; Krzepkowska, M. The Rheological and Instrumental Textural Properties of Selected Table Fats. Int. J. Food Prop 2008, 11, 678–686. [Google Scholar] [CrossRef]
- Ziarno, M.; Kozłowska, M.; Ratusz, K.; Hasalliu, R. Effect of the Addition of Selected Herbal Extracts on the Quality Characteristics of Flavored Cream and Butter. Foods 2023, 12, 471. [Google Scholar] [CrossRef]
- Evers, J.M.; Crawford, R.A.; Kissling, R.C. Determination of moisture, solids–not–fat and fat–by–difference in butter using routine methods according to ISO 8851/IDF 191—An international collaborative study and a meta–analysis. Int. Dairy J. 2003, 13, 55–65. [Google Scholar] [CrossRef]
- Dudkiewicz, A.; Hayes, W.; Onarinde, B. Sensory quality and shelf–life of locally produced British butters compared to large–scale, industrially produced butters. Br. Food J. 2022, 124, 3220–3235. [Google Scholar] [CrossRef]
- Chudy, S.; Bilska, A.; Kowalski, R.; Teichert, J. Colour of milk and milk products in CIE L*a*b* space. Med. Wet 2020, 76, 77–81. [Google Scholar] [CrossRef] [Green Version]
- PN-EN ISO 660:2009; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. International Organization for Standardization: Geneva, Switzerland, 2009.
- PN-EN ISO 3960:2017; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (visual) endpoint determination. International Organization for Standardization: Geneva, Switzerland, 2017.
- PN-EN ISO 3657:2013; Animal and Vegetable Fats and Oils Determination of Saponification Value. International Organization for Standardization: Geneva, Switzerland, 2013.
- Derewiaka, D.; Sosińska, E.; Obiedziński, M.; Krogulec, A.; Czaplicki, S. Determination of the adulteration of butter. Eur. J. Lip. Sci. Technol 2011, 113, 1005–1011. [Google Scholar] [CrossRef]
- Krause, A.J.; Lopetcharat, K.; Drake, M.A. Identification of the characteristics that drive consumer liking of butter. J. Dairy Sci. 2007, 90, 2091–2102. [Google Scholar] [CrossRef] [Green Version]
- Lai, O.M.; Ghazali, H.M.; France, Ch.; Chong, C.L. Physical properties of lipase catalyzed transesterified blends of palm stearin and anhydrous milk fat. Food Chem. 2000, 70, 221–225. [Google Scholar] [CrossRef]
- Ramaswamy, N.; Baer, R.J.; Schingoethe, D.J.; Hippen, A.R.; Kasperson, K.M.; Whitlock, L.A. Composition and flavor of milk and butter from cows fed fish oil, extruded soybeans, or their combination. J. Dairy Sci. 2001, 84, 2144–2151. [Google Scholar] [CrossRef]
- Bobe, G.; Freeman, A.E.; Beitz, D.C.; Lindberg, G.L. Estimation of heritabilities for amounts of individual proteins and fatty acids in milk of Holstein cattle. J. Anim. Sci. 1996, 74 (Suppl. S1), 26. [Google Scholar]
- Queirós, M.S.; Grimaldi, R.; Gigante, M.L. Addition from milt fat positively affects the firmness of butter. Food Res. Int. 2016, 84, 69–75. [Google Scholar] [CrossRef]
- Subroto, E.; Indiarto, R.T.; Marta, H.; Wulan, A.S. Physicochemical and sensorial properties of recombined butter produced from milk fat and fish oil blend. Biosci. Res. 2018, 15, 3720–3727. [Google Scholar]
- Lapčíková, B.; Lapčík, L.; Valenta, T.; Kučerová, T. Functional and Quality Profile Evaluation of Butters, Spreadable Fats, and Shortenings Available from Czech Market. Foods 2022, 11, 3437. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, M.; Aljewicz, M.; Mroczek, E.; Cichosz, G. Palm oil-a cheaper alternative. Brom. Chem. Toksykol 2012, 65, 171–180. (In Polish) [Google Scholar]
- Rønholt, S.; Kirkensgaard, J.J.K.; Mortensen, K.; Knudsen, J.C. Effect of cream cooling rate and water content on butter microstructure during four weeks of storage. Food Hydrocol 2014, 34, 169–176. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission—Procedural Manual Twenty Seventh Edition CXS 280-1973. FAO and WHO. 2019. Rome. 2019, p. 249. Available online: https://www.fao.org/3/ca2329en/ca2329en.pdf (accessed on 10 February 2023).
- Regulation (EU) No 1308/2013 of the European Parliament and of the Council of 17 December 2013 establishing a common organisation of the markets in agricultural products and repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001 and (EC) No 1234/2007. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32013R1308 (accessed on 10 February 2023).
- Juriaanse, A.C.; Heertje, I. Microstructure of shortenings, margarine and butter e a review. Food Microstr. 1988, 7, 181–188. [Google Scholar]
- Mortensen, B.K. Butter and Other Milk Fat Products. In Encyclopedia of Dairy Sciences, 2nd ed.; Elsevier Science and Technology: Oxford, UK, 2011; pp. 492–521. [Google Scholar]
- Wassell, P. Bakery Fats. In Fats in Food Technology, 2nd ed.; Kanes, K.R., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 39–60. [Google Scholar]
- Funahashia, H.; Horiuchi, J. Characteristics of the churning process in continuous butter manufacture and modelling using an artificial neural network. Int. Dairy. J. 2008, 18, 323–328. [Google Scholar] [CrossRef]
- Staniewski, B. Selected aspects of butter quality standardisation. Przegl Mlecz. 2009, 10, 4–12. (In Polish) [Google Scholar]
- Vereecken, J.; Foubert, I.; Meeussen, W.; Lesaffer, A.; Dewettinck, K. Fat structuring with partial acylglycerols: Effect on solid fat profiles. Eur. J. Lip Sci. Technol. 2009, 111, 259–272. [Google Scholar] [CrossRef]
- van Dalen, G. Determination of the water droplet size distribution of fat spreads using confocal scanning laser microscopy. J. Micr. 2002, 208, 116–133. [Google Scholar] [CrossRef]
- Van lent, K.; Vanlerberghe, B.; Van Oostveldt, P.; Thas, O.; Van der Meeren, P. Determination of water droplet size distribution in butter: Pulsed field gradient NMR in comparison with confocal scanning laser microscopy. Int. Dairy J. 2008, 18, 12–22. [Google Scholar] [CrossRef]
- Czechowska-Liszka, M. Testing the Quality of Various Sorts of Breakfast Margarine. Zesz Nauk. Akad Ekon Krak 2002, 6583, 49–53. (In Polish) [Google Scholar]
- Vanhoutte, B.; Dewettinck, K.; Foubert, I.; Vanlerberghe, B.; Huyghebaert, A. The effect of phospholipids and water on the isothermal crystallisation of milk fat. Eur. J. Lip Sci. Technol 2002, 104, 490–495. [Google Scholar] [CrossRef]
- Ziarno, M.; Zaręba, D. Additives in the manufacture of butter and milkfat-based mixes. Przem Spoz 2008, 10, 24–28. (In Polish) [Google Scholar]
- Mokrzycki, W.; Tatol, M. Color difference Delta E-A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Official Journal of the European Union L 354/16, 16 December 2008; 16.
- Bellinazo, P.L.; Reissig Soares Vitola, H.; Cruxen, C.E.; Kreutz Braun, C.L.; Hackbart, H.C.; Padilha da Silva, W.; Fiorentini, A.M. Probiotic butter: Viability of Lactobacillus casei strains and bixin antioxidant effect (Bixa orellana L.). Food Proc. Pres. 2019, 43, 1–9. [Google Scholar] [CrossRef]
- Kashaninejad, M.; Razavi, S.; Tehrani, M.; Kashaninejad, M. Effect of extrusion conditions and storage temperature on texture, colour and acidity of butter. Int. J. Dairy Technol. 2017, 70, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Laikoja, K.; Teder, L.; Jõudu, I. Assessment of chemical and sensory quality of unsalted and salted sweet cream butter during storage at different temperatures and time. Agraarteadus -J. Agric. Sci. 2017, 2, 76–81. [Google Scholar] [CrossRef]
- Khaskheli, G.B.; Khaskheli, A.A.; Magsi, A.S.; Barham, G.S.; Jamali, M.A.; Khaskheli, A.A. Study on Quality Characteristics of Sweet and Sour Cream Butter. Proc. Pak. Acad. Sci. Life Environ. Sci. 2020, 57, 71–80. [Google Scholar]
- Gonçalves, M.F.D.; Baggio, S.R. Evaluation of quality of butter from different provenance. Food Sci. Technol. 2012, 32, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Kahyaoğlu, D.T.; Çakmakçı, S. Determination of the adulteration of butter with margarine by using fat constants. J. Agric. Sci. 2016, 22, 1–8. [Google Scholar] [CrossRef]
- Kahyaoğlu, D.T.; Çakmakçı, S. A comparative study on some properties and oxidation stability during storage of butter produced from different animals’ milk. J. Food 2018, 43, 283–293. [Google Scholar]
- Rutkowska, J.; Adamska, A. Fatty Acid Composition of Butter Originated from North-Eastern Region of Poland. Pol. J. Food Nutr. Sci. 2011, 61, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Rutkowska, J.; Adamska, A.; Białek, M. Fatty acid profile of milk cows reared in the mountain region of Poland. J. Dairy Res. 2012, 79, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.; Ross, R.P.; Hill, C.C.; Fitzgerald, G.F.; Stanton, C. Milk intelligence: Mining milk for bioactive substances associated with human health. Int. Dairy J. 2011, 21, 377–401. [Google Scholar] [CrossRef]
- Blaško, J.; Kubiniec, R.; Górova, R.; Fabry, I.; Lorenz, W.; Sojak, L. Fatty acid composition of summer and winter cows’ milk and butter. J. Food Nutr. Res. 2010, 49, 169–177. [Google Scholar]
- Rutkowska, J.; Sinkiewicz, I.; Adamska, A. Fatty acid profile of milk from cows fed a TMR system. Żywn Nauka Technol. Jakość 2012, 5, 135–144. (In Polish) [Google Scholar]
- Brunner, J.B. Physical equilibria in milk: The lipid phase. In Fundamentals of Dairy Chemistry, 2nd ed.; Webb, B.H., Johnson, A.H., Alford, J.A., Eds.; AVI: Westport, CT, USA, 1974; pp. 447–602. [Google Scholar]
- Jaeck, W.; Pabst, K. Field investigations on feeding of cows and milk fat quality. Kiel. Milch. Fors. 1990, 42, 281–296. [Google Scholar]
- Renner, E.; Kosmack, U. Genetic aspects concerning fatty acid composition of milk fat. 2. Fatty acid pattern of milk from progeny groups. Zuechtungskunde 1974, 46, 217–226. [Google Scholar]
- Karijord, Ø.; Standal, N.; Syrstad, O. Sources of variation in composition of milk fat. Z. Tierz Zuechtungsbiol. 1982, 99, 81–93. [Google Scholar] [CrossRef] [Green Version]
Sample Code | Declared Ingredients | Energy Value (in 100 g) | Fat [g] | Of Which Saturated Fatty Acids [g] | Carbohydrates [g] | Of Which Sugars [g] | Protein [g] | Salt [g] |
---|---|---|---|---|---|---|---|---|
butter samples | ||||||||
LMK | pasteurized cream, lactic acid bacteria cultures | 3071 kJ/747 kcal | 82 | 53 | 0.7 | 0.7 | 0.6 | 0.00 |
LaME | pasteurized cream | 3095 kJ/753 kcal | 83 | 54 | 0.8 | 0.8 | 0.6 | 0.00 |
LoME | pasteurized cream | 3058 kJ/744 kcal | 82 | 55 | 0.7 | 0.7 | 0.7 | 0.00 |
MEG | pasteurized cream, lactic acid concentrate, natural flavoring | 3061 kJ/744 kcal | 82 | 57 | 0.6 | 0.6 | 1.0 | 0.02 |
MEH | pasteurized cream | 3068 kJ/746 kcal | 82 | 54 | 1.0 | 1.0 | 1.0 | 0.02 |
MMP | pasteurized cream | 3095 kJ/753 kcal | 83 | 54 | 0.8 | 0.8 | 0.6 | 0.00 |
PME | pasteurized cream | 3097 kJ/753 kcal | 83 | 55 | 0.7 | 0.5 | 0.8 | 0.02 |
PrME | pasteurized cream | 3063 kJ/745 kcal | 82 | 57 | 1.0 | 1.0 | 0.7 | 0.03 |
butter substitute samples | ||||||||
FM | milk butter, vegetable oils (rapeseed, linseed), milk buttermilk, vitamins (A, D) | 2807 kJ/683 kcal | 75 | 29 | 1.1 | 1.1 | 0.8 | 0.00 |
LuPM | butter, rapeseed oil, water, lactic acid bacteria cultures | 2905 kJ/706 kcal | 78 | 35 | 0.6 | 0.6 | <0.05 | <0.01 |
LaM | cream, rapeseed vegetable oil, annatto bixin color, flavoring | 2559 kJ/622 kcal | 68 | 34 | 1.4 | 1.4 | 1.1 | 0.00 |
PaEM | vegetable fat: non-hydrogenated palm oil, sunflower oil, cream, cereal fat, emulsifiers: E471, E472c, E322, acidity regulator: lactic acid, beta-carotene, flavors | 2822 kJ/686 kcal | 75 | 33 | 1.6 | 0.9 | 0.6 | 0.04 |
RMTM | rapeseed and palm oils, butter, reconstituted butter, water, sea salt, lecithin, natural flavoring, lactic acid, vitamins A, D, carotenes | 2994 kJ/717 kcal | 80 | 30 | 0.6 | 0.6 | <0.05 | 0.32 |
SSO | pasteurized cream, rapeseed vegetable oil, lactic acid cultures | 2523 kJ/613 kcal | 67 | 37 | 1.4 | 0.8 | 1.2 | 0.03 |
ZaM | cream, rapeseed oil, annatto, flavoring | 2559 kJ/622 kcal | 68 | 34 | 1.4 | 1.4 | 1.1 | 0.00 |
BGP | Palm, rapeseed and sunflower oils, water, anhydrous milk fat, E471, E472c, E322, salt, flavorings, E160a, E330, vitamins A, D | 3034 kJ/738 kcal | 82 | 36 | 0.0 | 0.0 | 0.0 | 0.30 |
Verbal Definition of Water Distribution in Sample | The Size (Diameter) and Density of the Spots on the Indicator Paper | Class [Points] |
---|---|---|
Very bad | Diameter 3 mm 8 mm densely occurring (takes up approx. 20% of the paper surface) | 0 |
Bad | Diameter 1 mm 3 mm moderately dense (takes up approx. 10% of the paper surface) | 1 |
Sufficient | Diameter 0.3 mm 1 mm rare (occupies approx. 5% of the paper area) | 2 |
Good | No spots | 3 |
L* | a* | b* | |
---|---|---|---|
Standard butter | 91.6 | 5.5 | 24.7 |
Butter Samples | Spreadability [N × s] | ||
at 4 °C | 30 min after Removing it from the Refrigerator | at 20 °C | |
LMK | 91.49 ± 3.54 i | 34.95 ± 5.66 f | 15.31 ± 0.79 d |
LaME | 64.76 ± 2.03 g | 31.22 ± 2.99 f | 4.79 ± 1.45 c |
LoME | 70.72 ± 6.04 g,h | 30.51 ± 6.31 f | 8.70 ± 1.22 d,e |
MEG | 94.38 ± 6.56 i | 38.85 ± 5.24 f | 16.40 ± 4.34 d,e |
MEH | 78.05 ± 1.11 h | 27.30 ± 8.33 e,f | 20.86 ± 2.46 e |
MMP | 69.69 ± 4.51 g | 37.84 ± 3.48 f | 5.71 ± 1.14 b,c |
PME | 94.62 ± 5.18 i | 45.39 ± 7.50 f,g | 17.31 ± 7.11 d,e |
PrME | 56.64 ± 4.65 g | 28.03 ± 1.40 e,f | 8.14 ± 1.03 c |
Butter substitutes samples | |||
FM | 20.38 ± 1.41 e | 3.35 ± 1.27 b | n.d. 1 |
LuPM | 22.39 ± 0.63 e | 8.29 ± 1.01 c | 1.75 ± 0.40 a |
LaM | 23.18 ± 1.67 e | 7.51 ± 1.37 c | 0.53 ± 0.02 a |
PaEM | 30.94 ± 0.78 f | 16.51 ± 1.10 d,e | 14.46 ± 1.20 d |
RMTM | 13.27 ± 0.80 d | 7.90 ± 1.86 c | 2.12 ± 0.29 a |
SSO | 26.58 ± 0.96 e | 16.26 ± 1.68 d,e | 2.21 ± 0.05 a,b |
ZaM | 26.76 ± 1.10 e | 9.35 ± 1.28 c,d | 1.57 ± 0.55 a |
BGP | 13.21 ± 0.49 d | 7.80 ± 1.29 c | 2.17 ± 0.14 a |
Butter Samples | Hardness [N] | ||
at 4 °C | 30 min after Removing it from the Refrigerator | at 20 °C | |
LMK | 17.01 ± 0.55 h | 6.13 ± 0.65 d | 2.04 ± 0.17 b,c |
LaME | 12.54 ± 0.17 f | 5.58 ± 0.48 d | 1.02 ± 0.29 b |
LoME | 13.67 ± 0.34 f | 5.85 ± 0.59 d | 1.61 ± 0.22 b |
MEG | 19.28 ± 0.78 i | 7.49 ± 0.72 e | 3.27 ± 0.81 c |
MEH | 15.69 ± 0.07 g | 6.14 ± 0.93 d | 3.41 ± 0.34 c |
MMP | 14.15 ± 0.69 f,g | 7.07 ± 0.79 e | 1.23 ± 0.19 b |
PME | 17.56 ± 0.37 h | 7.92 ± 0.63 e | 3.92 ± 0.57 c |
PrME | 10.12 ± 0.82 f | 5.21 ± 0.21 d | 1.64 ± 0.18 b |
Butter substitutes samples | |||
FM | 3.85 ± 0.15 c,d | 0.65 ± 0.20 a | n.d. 1 |
LuPM | 4.02 ± 0.06 d | 1.46 ± 0.16 b | 0.33 ± 0.06 a |
LaM | 4.42 ± 0.29 d | 1.40 ± 0.21 b | 0.12 ± 0.01 a |
PaEM | 6.91 ± 0.11 d,e | 3.15 ± 0.13 c | 2.58 ± 0.28 c |
RMTM | 2.61 ± 0.06 c | 1.57 ± 0.35 b | 0.46 ± 0.06 a |
SSO | 5.01 ± 0.15 d | 2.85 ± 0.37 c | 0.47 ± 0.02 a |
ZaM | 4.96 ± 0.15 d | 1.66 ± 0.35 b | 0.30 ± 0.09 a |
BGP | 3.79 ± 0.05 c,d | 1.61 ± 0.33 b | 0.38 ± 0.07 a |
Butter Samples | Adhesive force [N] | ||
at 4 °C | 30 min after Removing it from the Refrigerator | at 20 °C | |
LMK | −5.03 ± 0.76 a | −2.48 ± 0.33 c | −0.84 ± 0.06 d,e |
LaME | −3.82 ± 0.05 b | −2.16 ± 0.27 c | −0.50 ± 0.11 e |
LoME | −3.79 ± 0.19 b | −1.92 ± 0.11 c,d | −1.39 ± 0.09 d |
MEG | −3.16 ± 0.40 b | −2.23 ± 0.12 c | −1.24 ± 0.20 d |
MEH | −3.79 ± 0.19 b | −1.81 ± 0.23 d | −1.71 ± 0.73 d |
MMP | −3.44 ± 0.16 b | −2.68 ± 0.26 c | −0.59 ± 0.05 f |
PME | −3.68 ± 0.45 b | −2.29 ± 0.07 c | −1.15 ± 0.45 d |
PrME | −3.46 ± 0.14 b | −2.28 ± 0.07 c | −0.77 ± 0.09 e |
Butter substitutes samples | |||
FM | −1.49 ± 0.11 d | −0.26 ± 0.05 g | n.d. 1 |
LuPM | −1.42 ± 0.07 d | −0.59 ± 0.06 e | −0.16 ± 0.03 g |
LaM | −1.46 ± 0.05 d | −0.58 ± 0.07 e | −0.08 ± 0.01 g |
PaEM | −2.08 ± 0.13 c | −1.31 ± 0.05 d | −1.16 ± 0.10 d |
RMTM | −1.01 ± 0.05 d,e | −0.66 ± 0.10 e | −0.24 ± 0.03 g |
SSO | −1.47 ± 0.11 d | −0.95 ± 0.09 e | −0.24 ± 0.02 g |
ZaM | −1.50 ± 0.06 d | −0.63 ± 0.08 e | −0.16 ± 0.03 g |
BGP | −1.26 ± 0.04 d | −0.64 ± 0.08 e | −0.20 ± 0.03 g |
Butter Samples | Adhesiveness [N × s] | ||
at 4 °C | 30 min after Removing it from the Refrigerator | at 20 °C | |
LMK | −18.46 ± 0.98 a | −12.16 ± 1.67 b | −4.12 ± 0.34 e,f |
LaME | −17.26 ± 0.29 a | −10.60 ± 1.23 b,c | −2.53 ± 0.50 f,g |
LoME | −9.43 ± 0.35 c | −8.59 ± 1.03 c,d | −3.55 ± 0.61 f |
MEG | −10.82 ± 1.97 c | −8.81 ± 1.20 c | −5.64 ± 0.83 e |
MEH | −14.10 ± 0.80 b | −7.93 ± 1.02 d | −6.93 ± 1.30 d |
MMP | −16.59 ± 0.44 a | −12.68 ± 1.23 b | −2.93 ± 0.27 f,g |
PME | −17.32 ± 1.57 a | −10.45 ± 0.70 b,c | −6.97 ± 1.32 d |
PrME | −16.03 ± 0.34 a | −11.40 ± 0.34 b | −3.84 ± 0.51 f |
Butter substitutes samples | |||
FM | −6.35 ± 0.32 d | −1.15 ± 0.17 h | n.d. 1 |
LuPM | −6.13 ± 0.22 d,e | −2.61 ± 0.25 g | −0.86 ± 0.14 h,i |
LaM | −5.97 ± 0.87 d,e | −2.65 ± 0.38 g | −0.52 ± 0.00 i |
PaEM | −3.30 ± 0.83 f | −3.70 ± 0.76 f | −3.98 ± 0.45 f |
RMTM | −3.99 ± 0.13 f | −3.13 ± 0.45 f | −1.22 ± 0.13 h |
SSO | −3.86 ± 0.31 f | −3.16 ± 1.10 f | −1.19 ± 0.07 h |
ZaM | −6.50 ± 0.75 d | −2.83 ± 0.35 g | −0.77 ± 0.12 h,i |
BGP | −3.92 ± 0.12 f | −3.14 ± 0.70 f | −1.20 ± 0.05 h |
Parameter | Water Content [%] | Degree of Dispersion of Water [Points] | Plasma pH |
---|---|---|---|
Butter Samples | |||
LMK | 16.12 ± 0.16 a | 3.0 ± 0.0 a | 5.45 ± 0.43 b,c |
LaME | 15.39 ± 0.49 a | 3.0 ± 0.0 a | 5.94 ± 0.18 c |
LoME | 15.99 ± 0.44 a | 3.0 ± 0.0 a | 6.38 ± 0.36 c |
MEG | 16.08 ± 0.35 a | 3.0 ± 0.0 a | 5.17 ± 0.18 b |
MEH | 15.59 ± 0.36 a | 3.0 ± 0.0 a | 6.32 ± 0.11 c |
MMP | 15.24 ± 0.18 a | 3.0 ± 0.0 a | 6.38 ± 0.30 c |
PME | 15.61 ± 0.27 a | 3.0 ± 0.0 a | 6.27 ± 0.27 c |
PrME | 16.08 ± 0.24 a | 3.0 ± 0.0 a | 6.77 ± 0.16 c |
Butter substitutes Samples | |||
FM | 24.88 ± 0.40 d | 3.0 ± 0.0 a | 4.59 ± 0.28 a |
LuPM | 22.04 ± 0.40 c | 3.0 ± 0.0 a | 4.56 ± 0.24 a |
LaM | 32.09 ± 0.29 e | 3.0 ± 0.0 a | 4.54 ± 0.34 a |
PaEM | 24.95 ± 0.44 d | 3.0 ± 0.0 a | 4.05 ± 0.32 a |
RMTM | 19.93 ± 0.47 c | 3.0 ± 0.0 a | 4.50 ± 0.17 a |
SSO | 32.97 ± 0.33 e | 3.0 ± 0.0 a | 3.98 ± 0.08 a |
ZaM | 32.10 ± 0.42 e | 3.0 ± 0.0 a | 4.45 ± 0.28 a |
BGP | 17.93 ± 0.35 b | 3.0 ± 0.0 a | 4.43 ± 0.09 a |
Parameter | L* | a* | b* | ΔE |
---|---|---|---|---|
Butter Samples | ||||
LMK | 85.72 ± 0.78 a,b,c,d | −6.98 ± 0.10 a | 30.25 ± 0.40 c,d,e | 14.89 ± 0.11 b,c |
LaME | 88.44 ± 0.39 c,d | −7.24 ± 0.07 a | 31.82 ± 0.26 e,f,g | 14.94 ± 0.10 b,c |
LoME | 88.13 ± 0.59 c,d | −7.48 ± 0.11 a | 29.04 ± 0.37 c | 14.13 ± 0.12 b |
MEG | 87.67 ± 1.41 b,c,d | −6.93 ± 0.07 a | 31.57 ± 0.94 e,f | 14.81 ± 0.17 b,c |
MEH | 87.50 ± 0.57 b,c,d | −7.16 ± 0.05 a | 30.67 ± 0.37 c,d,e | 14.59 ± 0.09 b,c |
MMP | 88.69 ± 0.19 c,d | −7.32 ± 0.14 a | 32.08 ± 0.05 e,f,g | 15.08 ± 0.16 b,c |
PME | 87.12 ± 0.49 a,b,c,d | −7.49 ± 0.12 a | 33.84 ± 0.63 f,g | 16.51 ± 0.44 c |
PrME | 89.30 ± 0.16 d | −7.13 ± 0.02 a | 33.06 ± 0.14 f,g | 15.32 ± 0.06 b,c |
Butter Substitutes Samples | ||||
FM | 83.70 ± 1.71 a | −7.01 ± 0.26 a | 25.34 ± 0.70 b | 14.88 ± 0.68 b,c |
LuPM | 86.58 ± 2.26 a,b,c,d | −7.24 ± 0.16 a | 25.55 ± 1.26 b | 13.90 ± 0.48 b |
LaM | 87.98 ± 0.65 c,d | −5.97 ± 0.04 a | 30.81 ± 0.48 c,d,e | 13.50 ± 0.04 b |
PaEM | 85.40 ± 1.37 a,b,c | −6.74 ± 0.04 a | 31.18 ± 0.78 d,e,f | 15.23 ± 0.17 b,c |
RMTM | 84.11 ± 4.17 a,b | −0.63 ± 0.09 a | 20.92 ± 2.22 a | 15.67 ± 3.15 c |
SSO | 86.82 ± 0.87 a,b,c,d | −7.56 ± 0.13 a | 26.76 ± 0.33 b | 14.09 ± 0.14 b |
ZaM | 86.63 ± 0.20 a,b,c,d | −6.22 ± 0.15 a | 29.31 ± 0.23 c,d | 13.55 ± 0.06 b |
BGP | 86.06 ± 0.45 a,b,c,d | −5.04 ± 2.98 a | 28.04 ± 0.31 c | 12.37 ± 2.40 a |
Butter Samples | Acid Value [mg KOH/g fat] | Saponification Number [mg KOH/g fat] |
---|---|---|
LMK | 1.27 ± 0.03 b | 227.58 ± 0.43 b |
LaME | 1.20 ± 0.02 a | 228.03 ± 0.58 b,c |
LoME | 1.16 ± 0.03 a | 226.19 ± 0.80 a |
MEG | 1.31 ± 0.02 b | 230.35 ± 0.32 d |
MEH | 1.54 ± 0.03 d | 228.18 ± 0.36 b,c |
MMP | 1.14 ± 0.03 a | 229.02 ± 0.11 c |
PME | 1.16 ± 0.03 a | 230.30 ± 0.6 d |
PrME | 1.37 ± 0.02 c | 231.18 ± 0.55 d |
Fatty Acids | Percentage of Fatty Acids Present in the Fat Fraction [%] | |||||||
---|---|---|---|---|---|---|---|---|
Butter Samples | LMK | LaME | LoME | MEG | MEH | MMP | PME | PrME |
C 4:0 | 0.24 ± 0.13 a,b | 0.20 ± 0.04 a,b | 0.17 ± 0.20 a | 0.71 ± 0.04 c | 0.29 ± 0.07 a,b | 0.5 ± 0.11 b,c | 0.69 ± 0.17 c | 0.78 ± 0.08 c |
C 6:0 | 0.52 ± 0.15 a,b | 0.36 ± 0.04 a | 0.43 ± 0.06 a,b | 0.81 ± 0.04 c | 0.54 ± 0.09 a,b | 0.65 ± 0.04 b,c | 0.85 ± 0.09 c | 0.89 ± 0.06 c |
C 8:0 | 0.5 ± 0.12 b,c | 0.32 ± 0.06 a | 0.38 ± 0.07 a,b | 0.65 ± 0.04 c,d | 0.48 ± 0.04 a,b,c | 0.57 ± 0.01 b,c,d | 0.62 ± 0.07 c,d | 0.69 ± 0.04 d |
C 10:0 | 1.89 ± 0.21 a,c | 1.25 ± 0.41 a | 1.46 ± 0.2 a,b | 2.07 ± 0.10 c | 1.71 ± 0.11 a,b,c | 1.96 ± 0.08 a,c | 2.15 ± 0.09 c | 2.15 ± 0.04 c |
C 12:0 | 2.67 ± 0.18 a,b | 1.89 ± 0.73 a | 2.15 ± 0.31 a,b | 2.9 ± 0.11 b | 2.55 ± 0.12 a,b | 2.83 ± 0.06 a,b | 2.96 ± 0.04 b | 2.93 ± 0.06 b |
C 14:0 | 9.44 ± 0.74 a,b | 8.03 ± 2.79 a | 9.32 ± 0.37 a,b | 11.01 ± 0.14 a,b | 10.44 ± 0.23 a,b | 10.82 ± 0.19 a,b | 11.41 ± 0.18 b | 10.96 ± 0.12 a,b |
C 14:1 | 0.13 ± 0.02 a | 0.13 ± 0.05 a | 0.15 ± 0.02 a,b | 0.18 ± 0.01 a,b,c | 0.20 ± 0.01 b,c | 0.20 ± 0.01 b,c | 0.22 ± 0.01 c | 0.23 ± 0.01 c |
C 15:0 | 0.90 ± 0.09 a | 0.74 ± 0.29 a | 0.93 ± 0.19 a | 1.03 ± 0.01 a | 0.98 ± 0.03 a | 1.14 ± 0.05 a | 1.12 ± 0.08 a | 1.05 ± 0.03 a |
C 16:0 | 32.49 ± 1.19 a | 33.13 ± 2.47 a | 37.15 ± 2.31 b | 34.61 ± 0.22 a,b | 34.56 ± 1.02 a,b | 34.85 ± 0.38 a,b | 35.11 ± 0.74 a,b | 31.37 ± 0.39 a |
C 17:0 | 0.54 ± 0.03 a | 0.52 ± 0.17 a | 0.58 ± 0.09 a | 0.60 ± 0.01 a | 0.65 ± 0.04 a | 0.69 ± 0.07 a | 0.68 ± 0.08 a | 0.69 ± 0.02 a |
C 18:0 | 12.10 ± 0.34 a | 12.73 ± 1.21 a | 11.39 ± 0.60 a | 11.59 ± 0.11 a | 11.34 ± 0.46 a | 11.06 ± 0.11 a | 11.17 ± 0.27 a | 11.73 ± 0.06 a |
C 20:0 | 0.13 ± 0.01 a | 0.15 ± 0.01 a | 0.14 ± 0.03 a | 0.13 ± 0.00 a | 0.17 ± 0.03 a | 0.14 ± 0.02 a | 0.13 ± 0.02 a | 0.12 ± 0.01 a |
C 14:1 cis | 1.02 ± 0.10 a,b | 0.90 ± 0.33 a | 1.09 ± 0.05 a,b,c | 1.27 ± 0.05 a,b,c | 1.25 ± 0.04 a,b,c | 1.37 ± 0.02 b,c | 1.39 ± 0.06 c | 1.39 ± 0.04 c |
C 15:1 | 0.12 ± 0.02 a | 0.14 ± 0.06 a,b | 0.19 ± 0.03 a,b | 0.20 ± 0.01 a,b | 0.21 ± 0.02 b | 0.23 ± 0.02 b | 0.22 ± 0.03 b | 0.22 ± 0.01 b |
C 16:1 trans | 0.14 ± 0.02 a,b | 0.13 ± 0.01 a,b | 0.13 ± 0.02 a | 0.14 ± 0 a,b | 0.15 ± 0.02 a,b | 0.15 ± 0.01 a,b | 0.14 ± 0.01 a,b | 0.17 ± 0.01 b |
C 16:1 cis9 | 1.9 ± 0.05 a | 2.04 ± 0.13 a | 1.98 ± 0.36 a | 1.91 ± 0.01 a | 1.86 ± 0.13 a | 2.01 ± 0.07 a | 1.91 ± 0.07 a | 1.84 ± 0.03 a |
∑C 16:1 cis | 0.48 ± 0.05 a | 0.41 ± 0.16 a,b | 0.59 ± 0.11 a,b | 0.58 ± 0.01 a,b | 0.55 ± 0.05 a,b | 0.63 ± 0.05 a,b | 0.60 ± 0.03 a,b | 0.64 ± 0.01 b |
C 17:1 cis | 0.14 ± 0.00 a | 0.16 ± 0.02 a | 0.19 ± 0.07 a | 0.19 ± 0.03 a | 0.20 ± 0.04 a | 0.23 ± 0.01 a | 0.20 ± 0.03 a | 0.21 ± 0.02 a |
C 17:1 cis izo | 0.02 ± 0.01 a | 0.05 ± 0.02 a | 0.05 ± 0.03 a | 0.04 ± 0.00 a | 0.06 ± 0.01 a | 0.05 ± 0.00 a | 0.05 ± 0.01 a | 0.04 ± 0.00 a |
∑C 18:1 trans | 2.13 ± 0.22 b,c | 1.12 ± 0.46 a | 1.32 ± 0.40 a | 1.65 ± 0.02 a,b | 1.30 ± 0.14 a | 1.73 ± 0.05 a,b | 1.49 ± 0.18 a,b | 2.84 ± 0.06 c |
C 18:1 cis9 | 25.83 ± 1.88 a,b | 28.80 ± 5.12 b | 25.18 ± 1.73 a,b | 22.90 ± 0.21 a,b | 25.34 ± 1.82 a,b | 23.07 ± 0.17 a,b | 22.27 ± 0.25 a | 23.17 ± 0.12 a,b |
C 18 1 trans9 | 1.58 ± 0.25 a,b | 1.76 ± 0.68 b | 1.13 ± 0.26 a,b | 0.98 ± 0.01 a,b | 1.01 ± 0.09 a,b | 1.01 ± 0.0 a,b | 0.89 ± 0.04 a | 1.01 ± 0.01 a,b |
∑C 18:1 cis | 1.18 ± 0.09 b | 0.81 ± 0.19 a | 0.89 ± 0.20 a,b | 1.10 ± 0.01 a,b | 0.79 ± 0.06 a | 1.11 ± 0.02 a | 0.99 ± 0.06 a,b | 1.19 ± 0.06 b |
C 19:1 cis | 0.07 ± 0.02 a | 0.06 ± 0.02 a | 0.08 ± 0.02 a | 0.10 ± 0.01 a | 0.11 ± 0.02 a | 0.12 ± 0.00 a | 0.10 ± 0.01 a | 0.11 ± 0.01 a |
C 20:1 | 0.10 ± 0.01 a,b | 0.07 ± 0.04 a | 0.08 ± 0.02 a | 0.08 ± 0.01 a,b | 0.13 ± 0.01 b | 0.12 ± 0.02 a,b | 0.10 ± 0.01 a,b | 0.09 ± 0.01 a,b |
C 20:1 cis | 0.14 ± 0.07 a | 0.20 ± 0.15 a | 0.07 ± 0.07 a | 0.03 ± 0.01 a | 0.09 ± 0.04 a | 0.04 ± 0.01 a | 0.02 ± 0.01 a | 0.02 ± 0.01 a |
C 18:2 trans | 0.12 ± 0.01 b | 0.07 ± 0.02 a | 0.08 ± 0.02 a,b | 0.10 ± 0.00 a,b | 0.08 ± 0.02 a,b | 0.11 ± 0.01 a,b | 0.10 ± 0.02 a,b | 0.11 ± 0.01 b |
C 18:2 cis9,cis12 | 2.46 ± 0.34 a,b | 2.94 ± 1.32 b | 1.89 ± 0.21 a,b | 1.62 ± 0.02 a,b | 1.74 ± 0.15 a,b | 1.73 ± 0.09 a,b | 1.40 ± 0.09 a | 1.86 ± 0.02 a,b |
C 18:3 cis9,cis12,cis15 | 0.61 ± 0.05 a,b | 0.59 ± 0.13 a,b | 0.52 ± 0.10 a | 0.49 ± 0.02 a | 0.83 ± 0.19 b | 0.54 ± 0.05 a,b | 0.52 ± 0.05 a | 0.69 ± 0.06 a,b |
C 18:2 trans9,trans11 | 0.42 ± 0.02 c | 0.29 ± 0.08 a | 0.29 ± 0.05 a,b | 0.37 ± 0.01 a,b,c | 0.39 ± 0.02 a,b,c | 0.43 ± 0.04 c | 0.41 ± 0.04 b,c | 0.81 ± 0.03 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziarno, M.; Derewiaka, D.; Florowska, A.; Szymańska, I. Comparison of the Spreadability of Butter and Butter Substitutes. Appl. Sci. 2023, 13, 2600. https://doi.org/10.3390/app13042600
Ziarno M, Derewiaka D, Florowska A, Szymańska I. Comparison of the Spreadability of Butter and Butter Substitutes. Applied Sciences. 2023; 13(4):2600. https://doi.org/10.3390/app13042600
Chicago/Turabian StyleZiarno, Małgorzata, Dorota Derewiaka, Anna Florowska, and Iwona Szymańska. 2023. "Comparison of the Spreadability of Butter and Butter Substitutes" Applied Sciences 13, no. 4: 2600. https://doi.org/10.3390/app13042600
APA StyleZiarno, M., Derewiaka, D., Florowska, A., & Szymańska, I. (2023). Comparison of the Spreadability of Butter and Butter Substitutes. Applied Sciences, 13(4), 2600. https://doi.org/10.3390/app13042600