Self-Healing Glass/Metakaolin-Based Geopolymer Composite Exposed to Molten Sodium Chloride and Potassium Chloride
Abstract
:1. Introduction
2. Methodology
2.1. Geopolymer Composite Preparation
2.2. Heating/Sintering
2.3. Group 1 Chloride Preparation
2.4. Mass/Length Change, Density, and Apparent Porosity
Equation (3). Bulk Volume | |
Equation (4). Open Pore Volume | |
Equation (5). Apparent Volume | |
Equation (6). Bulk Density | |
Equation (7). Open Porosity |
2.5. Microcharacterization
3. Results & Discussions
3.1. Effect of Initial Heat Treatment
3.2. Effect of Molten Salt Exposure/Prolonged Heating
4. Conclusions
- The density and open porosity of the ASH-G samples increased and decreased, respectively.
- Molten sodium chloride and potassium chloride did not chemically react with the ASH-G container after 240 h
- A total of 4 wt% of molten salt was lost after 240 days in air
- ASH-G samples were more affected by temperature than exposure to molten salt
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- BP. BP Statistical Review of World Energy; British Institute of Energy Economics: London, UK, 2022. [Google Scholar]
- IEA. Global Energy Review: CO2 Emission in 2021; IEA: Paris, France, 2021. [Google Scholar]
- NASA. Global Climate Change: Vital Signs of the Planet. 2022. Available online: https://climate.nasa.gov/evidence/ (accessed on 12 October 2022).
- Evans, M.; Belusko, M.; Liu, M.; Keane, P.K.; Xing, K.; Lau, T.; Bruno, F.; Taghipour, A.; Rainey, T.; Liu, A.; et al. Electrification & Renewables to Displace Fossil Fuel Process Heating; RACE 2030 Collaborative Research Center: Haymarket, Australia, 2021. [Google Scholar]
- Olivetti, E.A.; Ceder, G.; Gaustad, G.G.; Fu, X. Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals. Joule 2017, 1, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Görtz, J.; Aouad, M.; Wieprecht, S.; Terheiden, K. Assessment of pumped hydropower energy storage potential along rivers and shorelines. Renew. Sustain. Energy Rev. 2022, 165, 112027. [Google Scholar] [CrossRef]
- Alisha, R.; Fernandez, S.A.B.; Reed, P.M. Operational constraints and hydrologic variability limit hydropower in supporting wind integration. Environ. Res. Lett. 2013, 8, 024037. [Google Scholar]
- Socaciu, L. Seasonal Thermal Energy Storage Concepts. Acta Tech. Napoc.-Ser. Appl. Math. Mech. Eng. 2012, 55, 775–784. [Google Scholar]
- IRENA. Innovation Outlook: Thermal Energy Storage; Institutional Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Jacob, R.; Liu, M.; Sun, Y.; Belusko, M.; Bruno, F. Characterisation of promising phase change materials for high temperature thermal energy storage. J. Energy Storage 2019, 24, 100801. [Google Scholar] [CrossRef]
- Liu, M.; Omaraa, E.S.; Qi, J.; Haseli, P.; Ibrahim, J.; Sergeev, D.; Müller, M.; Bruno, F.; Majewski, P. Review and characterisation of high-temperature phase change material candidates between 500 C and 700 °C. Renew. Sustain. Energy Rev. 2021, 150, 111528. [Google Scholar] [CrossRef]
- Myers, P.D.; Goswami, D.Y. Thermal energy storage using chloride salts and their eutectics. Appl. Therm. Eng. 2016, 109, 889–900. [Google Scholar] [CrossRef] [Green Version]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 89th Edition; Taylor & Francis: Abingdon, UK, 2008. [Google Scholar]
- Jacob, R.; Riahi, S.; Liu, M.; Belusko, M.; Bruno, F. Technoeconomic Impacts of Storage System Design on the Viability of Concentrated Solar Power Plants. J. Energy Storage 2021, 34, 101987. [Google Scholar] [CrossRef]
- Kriven, W.M. Geopolymers and Geopolymer-Derived Composites. In Encyclopedia of Materials: Technical Ceramics and Glasses; Pomeroy, M., Ed.; Elsevier: Oxford, UK, 2021; pp. 424–438. [Google Scholar]
- Haseli, P.; Majewski, P.; Christo, F.; Raven, M.; Klose, S.; Bruno, F. Experimental Kinetic Analysis of Potassium Extraction from Ultrapotassic Syenite Using NaCl–CaCl2 Salt Mixture. ACS Omega 2020, 5, 16421–16429. [Google Scholar] [CrossRef]
- Engel, J.; Spiewak, I. Molten-salt reactors for efficient nuclear fuel utilization without plutonium separation. Trans. Am. Nucl. Soc. 1977, 27. [Google Scholar]
- Yin, Y.; Rumman, R.; Chambers, B.A.; Liu, M.; Jacob, R.; Bruno, F.; Belusko, M.; Lewis, D.A.; Andersson, G.G. Chemical degradation in Thermally Cycled Stainless Steel 316 with High-Temperature Phase Change Material. Sol. Energy Mater. Sol. Cells 2021, 230, 111216. [Google Scholar] [CrossRef]
- Ladkany, S.; Culbreth, W.; Loyd, N. Molten Salts and Applications II: 565 °C Molten Salt Solar Energy Storage Design, Corrosion, and Insulation. J. Energy Power Eng. 2018, 12, 517–532. [Google Scholar]
- Jonemann, M. Advanced Thermal Storage System with Novel Molten Salt; Halotechnics, Inc.: Golden, Colorado, 2013. [Google Scholar]
- LME Official Prices. London Metal Stock Exchange; London Metal Exchange: London, UK, 2021. [Google Scholar]
- Duval, D.J.; Risbud, S.H.; Shackelford, J.F. Mullite. In Ceramic and Glass Materials: Structure, Properties and Processing; Shackelford, J.F., Doremus, R.H., Eds.; Springer: Boston, MA, USA, 2008; pp. 27–39. [Google Scholar]
- Andreev, K.; Hoeksma, K. Using Mortar Joints to Reduce Stresses in Refractory Structures-Measurement and Modelling Experience. In Proceedings of the 49th International Colloquium on Refractories, Aachen, Germany, 7–8 November 2006. [Google Scholar]
- Kriven, W.M. Geopolymer-Based Composites. In Comprehensive Composite Materials II; Elsevier: Amsterdam, The Netherlands, 2018; Volume 5, pp. 269–280. [Google Scholar]
- Davidovits, J. Geopolymer Chemistry and Applications; Geopolymer Institute: Saint-Quentin, France, 2008; Volume 171. [Google Scholar]
- Tarbuck, E.J.; Lutgens, F.K.; Tasa, D.G. Earth Science, Global Edition; Pearson Education Limited: Harlow, UK, 2015. [Google Scholar]
- Sankar, K.; Sutrisno, A.; Kriven, W.M. Slag-fly ash and slag-metakaolin binders: Part II—Properties of precursors and NMR study of poorly ordered phases. J. Am. Ceram. Soc. 2019, 102, 3204–3227. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, C.; Zuo, L.; Wang, L.; Zhu, Q.; Wang, M. Investigation into the effect of calcium on the existence form of geopolymerized gel product of fly ash based geopolymers. Cem. Concr. Compos. 2019, 103, 279–292. [Google Scholar] [CrossRef]
- Tajuelo Rodriguez, E.; Garbev, K.; Merz, D.; Black, L.; Richardson, I.G. Thermal stability of C-S-H phases and applicability of Richardson and Groves’ and Richardson C-(A)-S-H(I) models to synthetic C-S-H. Cem. Concr. Res. 2017, 93, 45–56. [Google Scholar] [CrossRef]
- Sagoe-Crentsil, K.; Weng, L. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems. J. Mater. Sci. 2007, 42, 3007–3014. [Google Scholar] [CrossRef]
- Keane, P.; Jacob, R.; Belusko, M.; Kriven, W.M.; Stanford, N.; Bruno, F. Microstructural evolution of amorphous self-healing geopolymer composites containing alumina and glass frit. Int. J. Ceram. Eng. Sci. 2022, 4, 327–339. [Google Scholar] [CrossRef]
- Fang, Y.; Ahmad, M.R.; Lao, J.-C.; Qian, L.-P.; Dai, J.-G. Development of artificial geopolymer aggregates with thermal energy storage capacity. Cem. Concr. Compos. 2023, 135, 104834. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, C.; Qiao, Y.; Wang, X.; Jia, D.; Li, H.; Colombo, P. Porous geopolymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2021, 150, 106629. [Google Scholar] [CrossRef]
- Künzel, C.; Vandeperre, L.; Donatello, S.; Boccaccini, A.; Cheeseman, C.R.; Brown, P. Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers. J. Am. Ceram. Soc. 2012, 95, 3270–3277. [Google Scholar] [CrossRef] [Green Version]
- Duxson, P.; Lukey, G.C.; van Deventer, J.S.J. Thermal evolution of metakaolin geopolymers: Part 1—Physical evolution. J. Non-Cryst. Solids 2006, 352, 5541–5555. [Google Scholar] [CrossRef]
- Kutyla, G.P.; Kriven, W.M. Properties and characterization of alumina platelet reinforced geopolymer composites. J. Am. Ceram. Soc. 2020, 103, 5178–5185. [Google Scholar] [CrossRef]
- Bhuiya, A.W.; Hu, M.; Sankar, K.; Keane, P.F.; Ribero, D.; Kriven, W.M. Bone ash reinforced geopolymer composites. J. Am. Ceram. Soc. 2021, 104, 2767–2779. [Google Scholar] [CrossRef]
- Keane, P.F.; Foltz, J.S.; Chadha, V.; Marsh, C.P.; Kriven, W.M. Amorphous self-healed, chopped basalt fiber-reinforced, geopolymer composites. J. Am. Ceram. Soc. 2021, 104, 3443–3451. [Google Scholar] [CrossRef]
- Kuenzel, C.; Neville, T.P.; Donatello, S.; Vandeperre, L.; Boccaccini, A.R.; Cheeseman, C.R. Influence of metakaolin characteristics on the mechanical properties of geopolymers. Appl. Clay Sci. 2013, 83–84, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Davidovits, R.; Plelegris, C.; Davidovits, J. Standardized Method in Testing Commercial Metakaolins for Geopolymer Formulations; Geopolymer Institute Library: Saint-Quentin, France, 2019. [Google Scholar]
- Martin, J.W. 4-Glasses and ceramics. In Materials for Engineering, 3rd ed.; Martin, J.W., Ed.; Woodhead Publishing: Sawston, UK, 2006; pp. 133–158. [Google Scholar]
- Karazi, S.M.; Ahad, I.U.; Benyounis, K.Y. Laser Micromachining for Transparent Materials. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Piconi, C. 1.105-Alumina. In Comprehensive Biomaterials; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2011. [Google Scholar]
- Phuah, X.L.; Jian, J.; Wang, H.; Wang, X.; Zhang, X.; Wang, H. Ultra-high heating rate effects on the sintering of ceramic nanoparticles: An in situ TEM study. Mater. Res. Lett. 2021, 9, 373–381. [Google Scholar] [CrossRef]
- Chateau, X. 6-Particle packing and the rheology of concrete. In Understanding the Rheology of Concrete; Roussel, N., Ed.; Woodhead Publishing: Sawston, UK, 2012. [Google Scholar]
- Le, V.S.; Louda, P.; Tran, H.N.; Nguyen, P.D.; Bakalova, T.; Ewa Buczkowska, K.; Dufkova, I. Study on Temperature-Dependent Properties and Fire Resistance of Metakaolin-Based Geopolymer Foams. Polymers 2020, 12, 2994. [Google Scholar] [CrossRef]
- Hrma, P.; Kruger, A.A. High-temperature viscosity of many-component glass melts. J. Non-Cryst. Solids 2016, 437, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Bernal, S.A.; Bejarano, J.; Garzón, C.; Mejía de Gutiérrez, R.; Delvasto, S.; Rodríguez, E.D. Performance of refractory aluminosilicate particle/fiber-reinforced geopolymer composites. Compos. Part B Eng. 2012, 43, 1919–1928. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, J.; Zhang, H.; Li, M.; Wu, Y.; Guo, L.; Wang, W.; Duan, P.; Zhang, W.; Zhang, Z. Thermal stability and microstructure of metakaolin-based geopolymer blended with rice husk ash. Appl. Clay Sci. 2020, 196, 105769. [Google Scholar] [CrossRef]
- Adjei, S.; Elkatatny, S.; Ayranci, K. Effect of Elevated Temperature on the Microstructure of Metakaolin-Based Geopolymer. ACS Omega 2022, 7, 10268–10276. [Google Scholar] [CrossRef] [PubMed]
- Atkins, P.W. Shriver & Atkins’ Inorganic Chemistry, 5th ed.; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
Phase | Weight (%) | Theoretical Density (g/cm3) | Measured Density (g/cm3) | Calculated Volume (%) |
---|---|---|---|---|
KGP | 50 | 2.0481 [24] | 1.86 | 57.8 |
Glass Frit | 35 | 2.5 [42] | 2.47 | 33.2 |
Alumina Platelet | 15 | 3.97 [43] | 3.88 | 9.0 |
Element | Weight (%) |
---|---|
O | 44.0 |
Na | 12.5 |
Mg | 0.8 |
Al | 1.6 |
Si | 33.1 |
K | 0.7 |
Ca | 4.8 |
Zn | 1.9 |
Y | 0.7 |
Total | 100.0 |
Sample | Linear Shrinkage (%) | Mass Loss (%) | Density (g/cc) | Open Porosity (%) |
---|---|---|---|---|
Room Temperature | 0 | 0 | 1.93 | 19.95 |
Post 2.5 °C/min Heat Treatment | 7.7 | 12.0 | 2.32 | 0.73 |
Sample | Sample Number | Linear Shrinkage (%) | Mass Loss from Cured GP (%) | Density (g/cc) | Open Porosity (%) | Salt Mass Loss (%) |
---|---|---|---|---|---|---|
Room Temperature | 1 | - | - | 1.93 | 19.95 | - |
Post Heat Treatment | 1 | 7.7 | 12.0 | 2.32 | 0.7 | - |
Post NaCl Exposure (805 °C) | 2 | 8.6 | 11.9 | 2.37 | 2.3 | 4.1 |
Post NaCl-test Control (805 °C) | 3 | 8.6 | 12.0 | 2.38 | 2.1 | - |
Post KCl Exposure (775 °C) | 4 | 8.2 | 11.9 | 2.32 | 1.4 | 2.4 |
Post KCl-test Control (775 °C) | 5 | 8.2 | 11.9 | 2.33 | 1.5 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keane, P.F.; Jacob, R.; Belusko, M.; Bruno, F. Self-Healing Glass/Metakaolin-Based Geopolymer Composite Exposed to Molten Sodium Chloride and Potassium Chloride. Appl. Sci. 2023, 13, 2615. https://doi.org/10.3390/app13042615
Keane PF, Jacob R, Belusko M, Bruno F. Self-Healing Glass/Metakaolin-Based Geopolymer Composite Exposed to Molten Sodium Chloride and Potassium Chloride. Applied Sciences. 2023; 13(4):2615. https://doi.org/10.3390/app13042615
Chicago/Turabian StyleKeane, Patrick F., Rhys Jacob, Martin Belusko, and Frank Bruno. 2023. "Self-Healing Glass/Metakaolin-Based Geopolymer Composite Exposed to Molten Sodium Chloride and Potassium Chloride" Applied Sciences 13, no. 4: 2615. https://doi.org/10.3390/app13042615
APA StyleKeane, P. F., Jacob, R., Belusko, M., & Bruno, F. (2023). Self-Healing Glass/Metakaolin-Based Geopolymer Composite Exposed to Molten Sodium Chloride and Potassium Chloride. Applied Sciences, 13(4), 2615. https://doi.org/10.3390/app13042615