Efficient Machine Learning Model for Predicting the Stiffness of Circular Footings on Clay Overlying Sand
Abstract
:1. Introduction
2. Research Methodology
2.1. Dataset Collection Based on Numerical Simulation
2.2. Dataset Pre-Processing
2.3. Machine Learning Modeling
2.4. Performance Evaluation
2.5. Model Interpretation
- Variable importance score
- Partial dependence plots (PDPs)
2.6. Independent Model Verification
3. Results and Discussion
3.1. Hyper-Parameters Tuning
3.2. Model Evaluation and Visualization
3.3. Model Interpretation
3.4. Independent Model Verification
4. Conclusions
- For Kv, Kh, Km, and Kc, the R and Evar value of the DT model, as tuned by PSO on the training and testing sets, were both higher than 0.95, and the MSE and MAE were less than 0.15, indicating that the model had a high level of robustness.
- Feature importance showed that T/2R had the most significant effect on the four stiffness coefficients, with an average importance value of about 0.58. Furthermore, there were differences in the way features affected output variables. When a T/2R less than 0.5 interacted with Gsand/Gclay and ZD/2R in a coupled way, the effect on the stiffness coefficient was greater.
- Independent verification results showed that the R values between the true and predicted stiffness coefficients (Kv, Kh, Km, and Kc) were 0.97, 0.99, 0.99, and 0.95, respectively, indicating that the model has a high level of generalization.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Randolph, M.; Gourvenec, S. Offshore Geotechnical Engineering; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Dobry, R.; Gazetas, G. Dynamic response of arbitrarily shaped foundations. J. Geotech. Engng. 1986, 112, 109–135. [Google Scholar] [CrossRef]
- Ngo-Tran, C.L. The Analysis of Offshore Foundations Subjected to Combined Loading. Ph.D. Thesis, University of Oxford, Oxford, UK, 1996. [Google Scholar]
- Doherty, J.P.; Deeks, A.J. Elastic response of circular footings embedded in a non-homogeneous half-space. Géotechnique 2003, 53, 703–714. [Google Scholar] [CrossRef]
- Wang, Y.; Cassidy, M.J.; Bienen, B. Elastic stiffness of circular footings on clay overlying sand under general loading. Géotechnique Lett. 2020, 10, 498–509. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Jamei, M.; Mohammed, A.S.; Amar, M.N.; Hocine, O.; Khedher, K.M. Intelligent prediction of rock mass deformation modulus through three optimized cascaded forward neural network models. Earth Sci. Inform. 2022, 15, 1659–1669. [Google Scholar] [CrossRef]
- Guan, Q.; Yang, Z.; Guo, N.; Hu, Z. Finite element geotechnical analysis incorporating deep learning-based soil model. Comput. Geotech. 2023, 154, 105120. [Google Scholar] [CrossRef]
- Zhao, Z.; Duan, W.; Cai, G. A novel PSO-KELM based soil liquefaction potential evaluation system using CPT and Vs measurements. Soil Dyn. Earthq. Eng. 2021, 150, 106930. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, P.; Wu, H.; Wang, Z.; Zhong, Z. Prediction of shield tunneling-induced ground settlement using machine learning techniques. Front. Struct. Civ. Eng. 2019, 13, 1363–1378. [Google Scholar] [CrossRef]
- Huang, H.; Chang, J.; Zhang, D.; Zhang, J.; Wu, H.; Li, G. Machine learning-based automatic control of tunneling posture of shield machine. J. Rock Mech. Geotech. Eng. 2022, 14, 1153–1164. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Keshtegar, B.; Thai, D.-K.; Troung, N.-T. An ANN-adaptive dynamical harmony search algorithm to approximate the flyrock resulting from blasting. Eng. Comput. 2020, 38, 1257–1269. [Google Scholar] [CrossRef]
- Jamei, M.; Hasanipanah, M.; Karbasi, M.; Ahmadianfar, I.; Taherifar, S. Prediction of flyrock induced by mine blasting using a novel kernel-based extreme learning machine. J. Rock Mech. Geotech. Eng. 2021, 13, 1438–1451. [Google Scholar] [CrossRef]
- Garnica-Caparrós, M.; Memmert, D. Understanding gender differences in professional European football through machine learning interpretability and match actions data. Sci. Rep. 2021, 11, 10805. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Q.; Zhao, Y.; Liu, Y.; Chen, A.; Li, X.; Wu, T.; Li, J.; Guo, Y.; Liu, A. Radiomics analysis of iodine-based material decomposition images with dual-energy computed tomography imaging for preoperatively predicting microsatellite instability status in colorectal cancer. Front. Oncol. 2019, 9, 1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, C.; Fourie, A.; Chen, Q.; Tang, X.; Zhang, Q.; Gao, R. Data-driven modelling of the flocculation process on mineral processing tailings treatment. J. Clean. Prod. 2018, 196, 505–516. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, T.; Long, Z.; Wang, J.; Zhang, J. A machine-learning-based model for predicting the effective stiffness of precast concrete columns. Eng. Struct. 2022, 260, 114224. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, R.; Wu, C.; Goh, A.T.; Wang, L. Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression. Undergr. Space 2020, 7, 233–241. [Google Scholar] [CrossRef]
- Kushwah, J.S.; Kumar, A.; Patel, S.; Soni, R.; Gawande, A.; Gupta, S. Comparative study of regressor and classifier with decision tree using modern tools. Mater. Today Proc. 2021, 56, 3571–3576. [Google Scholar] [CrossRef]
- Chou, J.-S.; Yang, K.-H.; Pampang, J.P.; Pham, A.-D. Evolutionary metaheuristic intelligence to simulate tensile loads in reinforcement for geosynthetic-reinforced soil structures. Comput. Geotech. 2015, 66, 1–15. [Google Scholar] [CrossRef]
- He, X.; Xu, H.; Sabetamal, H.; Sheng, D. Machine learning aided stochastic reliability analysis of spatially variable slopes. Comput. Geotech. 2020, 126, 103711. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory, MHS’95. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Wang, G.; Ma, Z. Hybrid particle swarm optimization for first-order reliability method. Comput. Geotech. 2017, 81, 49–58. [Google Scholar] [CrossRef]
- Ray, R.; Kumar, D.; Samui, P.; Roy, L.B.; Goh, A.; Zhang, W. Application of soft computing techniques for shallow foundation reliability in geotechnical engineering. Geosci. Front. 2020, 12, 375–383. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Shi, Y. Tracking and optimizing dynamic systems with particle swarms. In Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Republic of Korea, 27–30 May 2001; Volume 101, pp. 94–100. [Google Scholar]
- Armaghani, D.J.; Hajihassani, M.; Bejarbaneh, B.Y.; Marto, A.; Mohamad, E.T. Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network. Measurement 2014, 55, 487–498. [Google Scholar] [CrossRef]
- Alexey, N.; Alois, K. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7, 21. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.; Chen, Q.; Fourie, A.; Zhang, Q. An intelligent modelling framework for mechanical properties of cemented paste backfill. Miner. Eng. 2018, 123, 16–27. [Google Scholar] [CrossRef]
- Xiong, Z.; Cui, Y.; Liu, Z.; Zhao, Y.; Hu, M.; Hu, J. Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation. Comput. Mater. Sci. 2020, 171, 109203. [Google Scholar] [CrossRef]
- Qi, C.; Wu, M.; Zheng, J.; Chen, Q.; Chai, L. Rapid identification of reactivity for the efficient recycling of coal fly ash: Hybrid machine learning modeling and interpretation. J. Clean. Prod. 2022, 343, 130958. [Google Scholar] [CrossRef]
- Zhou, J.; Li, E.; Yang, S.; Wang, M.; Shi, X.; Yao, S.; Mitri, H.S. Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Saf. Sci. 2019, 118, 505–518. [Google Scholar] [CrossRef]
- Krzywinski, M.; Altman, N. Classification and regression trees. Nat. Methods 2017, 14, 757–758. [Google Scholar] [CrossRef]
- Pacifici, M.; Rondinini, C.; Rhodes, J.R.; Burbidge, A.A.; Cristiano, A.; Watson, J.E.M.; Woinarski, J.C.Z.; Di Marco, M. Global correlates of range contractions and expansions in terrestrial mammals. Nat. Commun. 2020, 11, 2840. [Google Scholar] [CrossRef]
- Mokhtari, S.; Mooney, M.A. Predicting EPBM advance rate performance using support vector regression modeling. Tunn. Undergr. Space Technol. 2020, 104, 103520. [Google Scholar] [CrossRef]
- Systèmes, D. Abaqus User Manual, Version 6.14; Simulia Corp: Providence, RI, USA, 2014. [Google Scholar]
- Qi, C.; Chen, Q.; Dong, X.; Zhang, Q.; Yaseen, Z.M. Pressure drops of fresh cemented paste backfills through coupled test loop experiments and machine learning techniques. Powder Technol. 2019, 361, 748–758. [Google Scholar] [CrossRef]
- Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.P.; Roy, K. On Some Aspects of Variable Selection for Partial Least Squares Regression Models. QSAR Comb. Sci. 2008, 27, 302–313. [Google Scholar] [CrossRef]
Embedded Condition | Embedded Depth, ZD/2R | Distance to the Sand Layer, T/2R | ||
---|---|---|---|---|
model training | Case 1 | 0 | 0, 0.125, 0.25, 0.375, 0.5, 0.75, 1, 1.5, 2, 3, | 1, 5, 10, 15, 20, 25, 30, 35 |
Case 2 | 0.5, 1, 2 | 0, 0.125, 0.25, 0.375, 0.5, 0.75, 1, 1.5, 2, 3, | 1, 5, 10, 15, 20, 25, 30, 35 | |
Case 3 | 0.5, 1, 2 | 0, 0.125, 0.25, 0.375, 0.5, 0.75, 1, 1.5, 2, 3, | 1, 5, 10, 15, 20, 25, 30, 35 | |
This study: numerical model validation | Case 1 | 0 | 0, | 1 |
Case 1 | 0 | 0.5 | 5 | |
This study: training model evaluation | Case 1 | 0 | 2.5, 5 | 5, 10, 20, 40 |
Case 2 | 1.5 | 2.5, 5 | 5, 10, 20, 40 | |
Case 3 | 1.5 | 2.5, 5 | 5, 10, 20, 40 |
Parameters | Settings | Parameters | Settings |
---|---|---|---|
Fitness function | The cross-validation performance (R) | Population size | 200 |
Maximum generation | 50 | w | (1 + random)/2 |
1.8 | 1.8 |
NO. | Embedded Condition | ZD/2R | T/2R | KV | KH | KM | KC | |
---|---|---|---|---|---|---|---|---|
1 | Case 1 | 0 | 0 | 1 | 5.273 (0.04%) | 4.578 (0.15%) | 3.634 (0.80%) | −0.567 (0.60%) |
2 | Case 1 | 0 | 0.5 | 5 | 16.963 (0.30%) | 7.030 (0.35%) | 6.623 (0.8%) | 0.408 (0.75%) |
3 | Case 1 | 0 | 1 | 7.954 (0.14%) | 5.353 (0.24%) | 5.217 (0.60%) | −0.030 (1.00%) |
Hyper-Parameters | Kc | Kh | Km | Kv |
---|---|---|---|---|
max_depth | 10 | 13 | 12 | 14 |
min_samples_split | 3 | 2 | 2 | 2 |
Other hyper-parameters | min_samples_leaf = 1, max_features = 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, C.; Zheng, J.; Meng, C.; Wu, M. Efficient Machine Learning Model for Predicting the Stiffness of Circular Footings on Clay Overlying Sand. Appl. Sci. 2023, 13, 2653. https://doi.org/10.3390/app13042653
Qi C, Zheng J, Meng C, Wu M. Efficient Machine Learning Model for Predicting the Stiffness of Circular Footings on Clay Overlying Sand. Applied Sciences. 2023; 13(4):2653. https://doi.org/10.3390/app13042653
Chicago/Turabian StyleQi, Chongchong, Jiashuai Zheng, Chuiqian Meng, and Mengting Wu. 2023. "Efficient Machine Learning Model for Predicting the Stiffness of Circular Footings on Clay Overlying Sand" Applied Sciences 13, no. 4: 2653. https://doi.org/10.3390/app13042653
APA StyleQi, C., Zheng, J., Meng, C., & Wu, M. (2023). Efficient Machine Learning Model for Predicting the Stiffness of Circular Footings on Clay Overlying Sand. Applied Sciences, 13(4), 2653. https://doi.org/10.3390/app13042653