Advanced Unified Earthquake Catalog for North East India
Abstract
:1. Introduction
2. Seismicity of North East India
3. Data
4. Regression Analysis for Magnitude Conversion
4.1. Surface Wave and Body Wave Conversions
4.2. Local Magnitude into Mwg
4.3. Duration Magnitudes into Mwg
4.4. Intensity Conversion Relation
5. Declustering of the Catalog
6. The Magnitude of Completeness (Mc)
7. Seismogenic Zones
8. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B. Descriptions of Various Notations Used in Our Study
Notation | Detail |
mb,ISC: | Body Wave Magnitude from ISC |
mb,NEIC: | Body Wave Magnitude from NEIC |
MS,ISC: | Surface Wave Magnitude from ISC |
MS,NEIC: | Surface Wave Magnitude from NEIC |
ML,IMD: | Local Magnitude from Indian Meteorological Department |
ML: | Local Magnitude Scale |
MD,NEIC: | Duration Magnitude from NEIC |
M0: | Seismic Moment |
MW: | Moment Magnitude was given by Ref. [8] |
Mwg: | Seismic moment magnitude or Das magnitude Scale is given by Ref. [1] |
Mwg,GCMT: | Seismic moment magnitude determined by GCMT |
MW,NEIC: | Moment Magnitude determined by NEIC |
MMI: | Modified Mercalli Scale |
GOR: | Conventional General Orthogonal Regression |
GOR1: | General Orthogonal Regression gave by Ref. [19] |
GOR2: | Conventional General Orthogonal Regression |
SLR: | Standard Least square Regression |
Mx: | Theoretical True value corresponding to the observed independent variable |
My: | Theoretical True value corresponding to the observed dependent variable |
η: | Error Variance Ratio |
MSE: | Mean Square Error |
MAE: | Mean Average Error |
Rxy: | Correlation Coefficient |
RMSE: | Root Mean Square Error |
Appendix C. A Scheme for Conversions of Different Magnitude into Mwg,GCMT
References
- Das, R.; Sharma, M.; Choudhury, D.; Gonzalez, G. A Seismic Moment Magnitude Scale. Bull. Seismol. Soc. Am. 2019, 109, 1542–1555. [Google Scholar] [CrossRef]
- Beresnev, I.A. The reality of scaling law of earthquake-source spectra? J. Seismol. 2009, 13, 433–436. [Google Scholar] [CrossRef]
- Bormann, P.; Di Giacomo, D. The moment magnitude Mw and the energy magnitude Me: Common roots and differences. J. Seismol. 2011, 15, 411–427. [Google Scholar] [CrossRef]
- Bormann, P.; Saul, J. A Fast, Non-saturating Magnitude Estimator for Great Earthquakes. Seismol. Res. Lett. 2009, 80, 808–816. [Google Scholar] [CrossRef]
- Das, R.; Meneses, C. A unified moment magnitude earthquake catalog for Northeast India. Geomat. Nat. Hazards Risk 2021, 12, 167–180. [Google Scholar] [CrossRef]
- Choy, G.L.; Boatwright, J.L. Global patterns of radiated seismic energy and apparent stress. J. Geophys. Res. Solid Earth 1995, 100, 18205–18228. [Google Scholar] [CrossRef] [Green Version]
- Choy, G.L.; Kirby, S.H. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones. Geophys. J. Int. 2004, 159, 991–1012. [Google Scholar] [CrossRef] [Green Version]
- Hanks, T.C.; Kanamori, H. A moment magnitude scale. J. Geophys. Res. 1979, 84, 2348–2350. [Google Scholar] [CrossRef]
- Ekström, G.; Dziewoński, A.M.; Maternovskaya, N.N.; Nettles, M. Global seismicity of 2003: Centroid–moment-tensor solutions for 1087 earthquakes. Phys. Earth Planet. Inter. 2005, 148, 327–351. [Google Scholar] [CrossRef]
- Kanamori, H.; Anderson, D.L. Theoretical basis of some empirical relations in seismology. Bull. Seismol. Soc. Am. 1975, 65, 1073–1095. [Google Scholar]
- Thingbaijam, K.K.S.; Nath, S.K.; Yadav, A.; Raj, A.; Walling, M.Y.; Mohanty, W.K. Recent seismicity in Northeast India and its adjoining region. J. Seismol. 2008, 12, 107–123. [Google Scholar] [CrossRef]
- Ristau, J. Comparison of Magnitude Estimates for New Zealand Earthquakes: Moment Magnitude, Local Magnitude, and Teleseismic Body-Wave Magnitude. Bull. Seismol. Soc. Am. 2009, 99, 1841–1852. [Google Scholar] [CrossRef]
- Das, R.; Wason, H.R.; Sharma, M.L. Magnitude conversion to unified moment magnitude using orthogonal regression relation. J. Asian Earth Sci. 2012, 50, 44–51. [Google Scholar] [CrossRef]
- Das, R.; Wason, H.R.; Sharma, M.L. Homogenization of Earthquake Catalog for Northeast India and Adjoining Region. Pure Appl. Geophys. 2012, 169, 725–731. [Google Scholar] [CrossRef]
- Das, R.; Wason, H.R.; Sharma, M.L. General Orthogonal Regression Relations between Body-Wave and Moment Magnitudes. Seismol. Res. Lett. 2013, 84, 219–224. [Google Scholar] [CrossRef]
- Das, R.; Wason, H.R.; Sharma, M.L. Reply to ‘Comment on “Magnitude conversion problem using general orthogonal regression” by H. R. Wason, Ranjit Das and M. L. Sharma’ by Paolo Gasperini and Barbara Lolli. Geophys. J. Int. 2014, 196, 628–631. [Google Scholar] [CrossRef]
- Das, R.; Wason, H.R.; Sharma, M.L. Unbiased Estimation of Moment Magnitude from Body- and Surface-Wave Magnitudes. Bull. Seismol. Soc. Am. 2014, 104, 1802–1811. [Google Scholar] [CrossRef]
- Wason, H.R.; Das, R.; Sharma, M.L. Regression Relations for Magnitude Conversion for the Indian Region. In Advances in Indian Earthquake Engineering and Seismology; Sharma, M.L., Shrikhande, M., Wason, H.R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 55–66. [Google Scholar] [CrossRef]
- Das, R.; Wason, H.R.; Gonzalez, G.; Sharma, M.L.; Choudhury, D.; Lindholm, C.; Roy, N.; Salazar, P. Earthquake Magnitude Conversion Problem. Bull. Seismol. Soc. Am. 2018, 108, 1995–2007. [Google Scholar] [CrossRef]
- Das, R.; Wason, H.R.; Sharma, M.L. Temporal and spatial variations in the magnitude of completeness for homogenized moment magnitude catalogue for northeast India. J. Earth Syst. Sci. 2012, 121, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.B.S.; Bormann, P.; Rastogi, B.K.; Das, M.V.; Chopra, S. A Homogeneous and Complete Earthquake Catalog for Northeast India and the Adjoining Region. Seismol. Res. Lett. 2009, 80, 609–627. [Google Scholar] [CrossRef]
- Nath, S.K.; Mandal, S.; Das Adhikari, M.; Maiti, S.K. A unified earthquake catalogue for South Asia covering the period 1900–2014. Nat. Hazards 2017, 85, 1787–1810. [Google Scholar] [CrossRef]
- Pandey, A.K.; Chingtham, P.; Roy, P.N.S. Homogeneous earthquake catalogue for Northeast region of India using robust statistical approaches. Geomat. Nat. Hazards Risk 2017, 8, 1477–1491. [Google Scholar] [CrossRef] [Green Version]
- Anbazhagan, P.; Balakumar, A. Seismic magnitude conversion and its effect on seismic hazard analysis. J. Seismol. 2019, 23, 623–647. [Google Scholar] [CrossRef]
- Dutta, T.K. Seismicity of Assam-zones of tectonic activity. Seism. Assam Zones Tecton. Act. 1964, 2, 152–163. [Google Scholar]
- Gupta, H.K.; Rajendran, K.; Singh, H.N. Seismicity of Northeast India region: PART I: The database. J. Geol. Soc. India 1986, 28, 345–365. [Google Scholar]
- Madansky, A. The fitting of straight lines when both variables are subject to error. J. Am. Stat. Assoc. 1959, 54, 173–205. [Google Scholar] [CrossRef]
- Kendall, M.; Stuart, A. The Advanced Theory of Statistics; Griffin: London, UK, 1976; Volume 1, p. 102. [Google Scholar]
- Fuller, W.A. Measurement Error Models; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Carroll, R.J.; Ruppert, D. The use and misuse of orthogonal regression in linear errors-in-variables models. Am. Stat. 1996, 50, 1–6. [Google Scholar]
- Vanzi, I.; Marano, G.C.; Monti, G.; Nuti, C. A synthetic formulation for the Italian seismic hazard and code implications for the seismic risk. Soil Dyn. Earthq. Eng. 2015, 77, 111–122. [Google Scholar] [CrossRef]
- Contento, A.; Aloisio, A.; Xue, J.; Quaranta, G.; Briseghella, B.; Gardoni, P. Probabilistic axial capacity model for concrete-filled steel tubes accounting for load eccentricity and debonding. Eng. Struct. 2022, 268, 114730. [Google Scholar] [CrossRef]
- Utsu, T. A method for determining the value of “b” in a formula log n = a-bM showing the magnitude-frequency relation for earthquakes. Geophys. Bull. Hokkaido Univ. 1965, 13, 99–103. [Google Scholar]
- Gardner, J.K.; Knopoff, L. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull. Seismol. Soc. Am. 1974, 64, 1363–1367. [Google Scholar] [CrossRef]
- Reasenberg, P. Second-order moment of central California seismicity, 1969–1982. J. Geophys. Res. Solid Earth 1985, 90, 5479–5495. [Google Scholar] [CrossRef]
- Uhrhammer, R.A. Characteristics of northern and central California seismicity. Earthq. Notes 1986, 57, 21. [Google Scholar]
- Wiemer, S. A software package to analyze seismicity: ZMAP. Seismol. Res. Lett. 2001, 72, 373–382. [Google Scholar] [CrossRef]
- Standard, I. Criteria for earthquake resistant design of structures. Bur. Indian Stand. Part 1893, 1, 1–21. [Google Scholar]
Seismogenic Zone | Major Division | Subdivision |
---|---|---|
I | Indo Burma Fault Belt | NS Indo-Burma Fold Belt |
II | Indo Burma Fault Belt | NE-SW Indo Burma Fold Belt |
III | Plateau Region | Sagging Fault Region |
IV | Mishmi Massif | NW-SE trending feature |
V | Plateau Region | Tibetan Plateau |
VI | Himalayan Mountain Belt | Eastern MCT |
VII | Shillong Massif | Shillong Plateau |
VIII | Bengal Basin | Sylhet Fault |
IX | Himalayan Mountain Belt | NE-SW trending Structure |
Regression Relation | Magnitude Range | Slope (GOR1) | Intercept (GOR1) | Slope (GOR2) | Intercept (GOR2) | Slope SLR | Intercept SLR | Rxy GOR1 | Rxy GOR2 | Rxy SLR | RMSE GOR1 | RMSE GOR2 | RMSE SLR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mb, ISC to Mwg η = 0.2 | 4.8 ≤ mb, ISC ≤ 6.1 | 1.19 | −1.19 | 1.61 | −3.38 | 1.16 | −1.01 | 0.74 | 0.59 | 0.69 | 0.22 | 0.28 | 0.24 |
mb, NEIC to Mwg η = 0.2 | 4.8 ≤ mb, NEIC ≤ 6.1 | 1.21 | −1.39 | 1.68 | −3.89 | 1.18 | −1.27 | 0.72 | 0.55 | 0.68 | 0.2 | 0.26 | 0.22 |
Ms,ISC to Mwgη = 0.6 | 4.1 ≤ Ms, ISC ≤ 6.1 | 0.68 | 1.69 | 0.71 | 1.525 | 0.64 | 1.89 | 0.97 | 0.88 | 0.9 | 0.08 | 0.19 | 0.18 |
Ms,NEIC to Mwgη = 0.6 | 4.2 ≤ Ms, NEIC ≤ 6.1 | 0.77 | 1.19 | 0.82 | 0.97 | 0.73 | 1.40 | 0.94 | 0.79 | 0.8 | 0.09 | 0.18 | 0.17 |
Intensity to Mwg η = 1 | 5 to 12 | 0.48 | 3.07 | 0.49 | 3.00 | 0.44 | 3.36 | 0.98 | 0.61 | 0.62 | 0.13 | 0.69 | 0.68 |
Local Magnitude η = 1 | 5.0 ≤ ML ≤ 6.6 | 1.31 | −1.89 | 1.47 | −2.76 | 1.24 | −1.49 | 0.89 | 0.74 | 0.77 | 0.16 | 0.25 | 0.24 |
Duration Magnitude η = 1 | 4.2 ≤ MD ≤ 6.8 | 0.82 | 0.83 | 1.007 | −0.109 | 0.64 | 1.76 | 0.81 | 0.26 | 0.4 | 0.14 | 0.3 | 0.27 |
Regression Relation | Magnitude Range | Error in Slope | Error in Intercept | MSE | MAE | RMSE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GOR1 | GOR2 | SLR | GOR1 | GOR2 | SLR | GOR1 | GOR2 | SLR | GOR1 | GOR2 | SLR | GOR1 | GOR2 | SLR | ||
mb, ISC to Mwg η=0.2 | 4.8 ≤ mb, ISC≤ 6.1 | ±0.01 | ±0.098 | ±0.07 | ± 0.35 | ±0.49 | ± 0.37 | 0.049 | 0.07 | 0.06 | 0.17 | 0.22 | 0.19 | 0.22 | 0.28 | 0.24 |
mb, NEIC to Mwg η=0.2 | 4.8 ≤ mb, NEIC≤ 6.1 | ±0.02 | ±0.11 | ±0.08 | ± 0.37 | ±0.60 | ± 0.42 | 0.04 | 0.29 | 0.05 | 0.17 | 0.47 | 0.19 | 0.2 | 0.26 | 0.22 |
Ms,ISC to Mwg η=0.6 | 4.1 ≤ Ms, ISC ≤ 6.1 | ±0.00 | ±0.04 | ±0.03 | ±0.08 | ±0.24 | ± 0.18 | 0.01 | 0.04 | 0.04 | 0.07 | 0.16 | 0.15 | 0.08 | 0.19 | 0.18 |
Ms,NEIC to Mwg η=0.6 | 4.2 ≤ Ms, NEIC ≤ 6.1 | ±0.00 | ±0.05 | ±0.05 | ±0.13 | ±0.326 | ± 0.23 | 0.01 | 0.03 | 0.03 | 0.07 | 0.15 | 0.14 | 0.09 | 0.18 | 0.17 |
Intensity to Mwg η=1 | 5 to 12 | ±0.001 | ±0.07 | ±0.07 | ±0.51 | ±1.38 | ± 0.50 | 0.02 | 0.44 | 0.43 | 0.1 | 0.53 | 0.52 | 0.13 | 0.69 | 0.68 |
Local Magnitude η=1 | 5.0 ≤ ML ≤ 6.6 | ±0.00 | ±0.08 | ±0.07 | ±0.25 | ±0.5 | ± 0.37 | 0.02 | 0.06 | 0.56 | 0.02 | 0.11 | 0.02 | 0.16 | 0.25 | 0.24 |
Duration Magnitude η=1 | 4.2 ≤ MD ≤ 6.8 | ±0.002 | ±0.06 | ±0.04 | ±0.10213 | ±0.35774 | ± 0.203 | 0.01 | 0.05 | 0.05 | 0.11 | 0.31 | 0.22 | 0.14 | 0.3 | 0.27 |
Catalog Time Periods | Mc | b | a |
---|---|---|---|
1737–1963 | 5.6 ± 0.23 | 0.74 | 6.5 |
1964–1990 | 4.1 ± 0.17 | 0.98 | 7.56 |
1964–2000 | 4 ± 0.17 | 0.85 | 6.86 |
1964–2012 | 3.9 ± 0.23 | 0.81 | 6.83 |
Mwg | Mw | |
---|---|---|
Mc (1964–1990) | 4.1 ± 0.17 | 4.7 ± 0.13 |
b | 0.98 | 1.27 |
a | 7.56 | 8.98 |
Mc (1964–2000) | 4 ± 0.17 | 4.4 ± 0.17 |
b | 0.85 | 0.95 |
a | 6.86 | 7.57 |
Mc (1964–2012) | 3.4 ± 0.11 | 4.1 ± 0.13 |
b | 0.61 | 0.8 |
a | 5.73 | 6.96 |
No. of Clusters | 942 (22.381%) | 1232 (31.882%) |
Seismogenic Zone | Mc | ‘b’ | ‘a’ |
---|---|---|---|
I | 3.4 | 0.6 | 5.02 |
II | 3.5 | 0.66 | 5.51 |
III | 3.9 | 0.7 | 4.96 |
IV | 4.1 | 1.09 | 6.52 |
V | 3.1 | 0.5 | 3.98 |
VI | 3 | 0.45 | 3.84 |
VII | 3.1 | 0.69 | 4.87 |
VIII | 3.2 | 0.61 | 3.85 |
IX | 3.3 | 0.65 | 4.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallavi; Das, R.; Joshi, S.; Meneses, C.; Biswas, T. Advanced Unified Earthquake Catalog for North East India. Appl. Sci. 2023, 13, 2812. https://doi.org/10.3390/app13052812
Pallavi, Das R, Joshi S, Meneses C, Biswas T. Advanced Unified Earthquake Catalog for North East India. Applied Sciences. 2023; 13(5):2812. https://doi.org/10.3390/app13052812
Chicago/Turabian StylePallavi, Ranjit Das, Sandeep Joshi, Claudio Meneses, and Tinku Biswas. 2023. "Advanced Unified Earthquake Catalog for North East India" Applied Sciences 13, no. 5: 2812. https://doi.org/10.3390/app13052812
APA StylePallavi, Das, R., Joshi, S., Meneses, C., & Biswas, T. (2023). Advanced Unified Earthquake Catalog for North East India. Applied Sciences, 13(5), 2812. https://doi.org/10.3390/app13052812