Performance Analysis of Hybrid PDM-SAC-OCDMA-Enabled FSO Transmission Using ZCC Codes
Abstract
:1. Introduction
2. Literature Review
3. Weather Conditions and OCDMA Code
3.1. Attenuation Caused by Fog and Snowfall Conditions
3.2. ZCC Code Construction
4. PDM-SAC-OCDMA-Enabled FSO System Description
5. Performance Analysis
6. Simulation Results
6.1. Impact of Clear Weather on PDM-SAC-OCDMA-Enabled FSO System
6.2. Impact of LF, MF, and HF on PDM-SAC-OCDMA-Enabled FSO System
6.3. Impact of WSF and DSF on PDM-SAC-OCDMA-Enabled FSO Transmission
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghafouri-Shiraz, H.; Karbassian, M.M. Optical CDMA Networks: Principles, Analysis and Applications; John Wiley & Sons, Ltd.: Chichester, UK, 2012; ISBN 978-1-119 94133-0. [Google Scholar]
- Cherifi, A.; Jellali, N.; Najjar, M.; Aljunid, S.A.; Bouazza, B.S. Development of a Novel Two-Dimensional-SWZCC—Code for Spectral/Spatial Optical CDMA System. Opt. Laser Technol. 2019, 109, 233–240. [Google Scholar] [CrossRef]
- Mrabet, H.; Cherifi, A.; Raddo, T.; Dayoub, I.; Haxha, S. A Comparative Study of Asynchronous and Synchronous OCDMA Systems. IEEE Syst. J. 2020, 15, 3642–3653. [Google Scholar] [CrossRef]
- Abd El-Mottaleb, S.A.; Métwalli, A.; Hassib, M.; Alfikky, A.A.; Fayed, H.A.; Aly, M.H. SAC-OCDMA-FSO communication system under different weather conditions: Performance enhancement. Opt. Quantum Electron. 2021, 53, 616–633. [Google Scholar] [CrossRef]
- Al-Khafaji, H.M.R.; Aljunid, S.A.; Amphawan, A.; Fadhil, H.A.; Safar, A.M. Reducing BER of spectral-amplitude coding optical code-division multiple-access systems by single photodiode detection technique. J. Eur. Opt. Soc. Publ. 2013, 8, 13022–13026. [Google Scholar] [CrossRef] [Green Version]
- Al-Khafaji, H.M.R.; Aljundi, S.A.; Fadhil, H.A. Improved BER based on intensity noise alleviation using developed detection technique for incoherent SAC-OCDMA systems. J. Mod. Opt. 2012, 59, 878–886. [Google Scholar] [CrossRef]
- Dat, P.T.; Kanno, A.; Yamamoto, N.; Kawanishi, T. Seamless Convergence of Fiber and Wireless Systems for 5G and Beyond Networks. J. Light. Technol. 2018, 37, 592–605. [Google Scholar] [CrossRef]
- Kanno, A.; Inagaki, K.; Morohashi, I.; Sakamoto, T.; Kuri, T.; Hosako, I.; Kawanishi, T.; Yoshida, Y.; Kitayama, K. 40 Gb/s Wband (75–110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission. Opt. Express 2011, 19, 56–63. [Google Scholar] [CrossRef]
- Mostafa, S.; Mohamed, A.E.-N.A.; El-Samie, F.E.A.; Rashed, A.N.Z. Performance evaluation of SAC-OCDMA system in free space optics and optical fiber system based on different types of codes. Wirel. Pers. Commun. 2017, 96, 2843–2861. [Google Scholar] [CrossRef]
- Pottoo, S.N.; Goyal, R.; Gupta, A. Performance investigation of optical communication system using FSO and OWC channel. In Proceedings of the 2020 Indo–Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN), Rajpura, India, 7–15 February 2020; pp. 176–180. [Google Scholar]
- Tang, X.; Ghassemlooy, Z.; Rajbhandari, S.; Popoola, W.O.; Lee, C.G. Coherent heterodyne multilevel polarization shift keying with spatial diversity in a free-space optical turbulence channel. J. Light. Technol. 2012, 30, 2689–2695. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S. Optical Wireless Communication: System and Channel Modelling with Matlab; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Kim, I.I.; McArthur, B.; Korevaar, E.J. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. In Optical Wireless Communications III; SPIE: Bellingham, WA, USA, 2001; Volume 4214, pp. 26–37. [Google Scholar]
- Singh, M.; Kříž, J.; Kamruzzaman, M.M.; Dhasarathan, V.; Sharma, A.; El-Mottaleb, A.; Somia, A. Design of a high-speed-OFDM-SAC-OCDMA-based FSO system using EDW codes for supporting 5G data services and smart city applications. Front. Phys. 2022, 10, 934848. [Google Scholar] [CrossRef]
- Singh, M.; Aly, M.H.; Abd El-Mottaleb, S.A. Performance analysis of 6×10 Gbps PDM-SAC-OCDMA-based FSO transmission using EDW codes with SPD detection. Optik 2022, 264, 169415. [Google Scholar] [CrossRef]
- Chaudhary, S.; Sharma, A.; Tang, X.; Wei, X.; Sood, P. A cost effective 100 Gbps FSO system under the impact of fog by incorporating OCDMA-PDM scheme. Wirel. Pers. Commun. 2020, 116, 2159–2168. [Google Scholar] [CrossRef]
- El-Mottaleb, S.A.A.; Singh, M.; Chehri, A.; Ahmed, H.Y.; Zeghid, M.; Khan, A.N. Capacity Enhancement for Free Space Optics Transmission System Using Orbital Angular Momentum Optical Code Division Multiple Access in 5G and beyond Networks. Energies 2022, 15, 7100. [Google Scholar] [CrossRef]
- Chaudhary, S.; Amphawan, A.; Nisar, K. Realization of free space optics with OFDM under atmospheric turbulence. Optik 2014, 125, 5196–5198. [Google Scholar] [CrossRef]
- Singh, M.; Pottoo, S.N.; Armghan, A.; Aliqab, K.; Alsharari, M.; Abd El-Mottaleb, S.A. 6G Network Architecture Using FSO-PDM/PV-OCDMA System with Weather Performance Analysis. Appl. Sci. 2022, 12, 11374. [Google Scholar] [CrossRef]
- Sharma, A.; Kaur, S.; Chaudhary, S. Performance analysis of 320 Gbps DWDM-FSO system under the effect of different atmospheric conditions. Opt. Quantum Electron. 2021, 53, 239–247. [Google Scholar] [CrossRef]
- Prabu, K.; Charanya, S.; Jain, M.; Guha, D. BER analysis of SS-WDM based FSO system for Vellore weather conditions. Opt. Commun. 2017, 403, 73–80. [Google Scholar] [CrossRef]
- Abd El-Mottaleb, S.A.; Me twalli, A.; ElDallal, T.A.; Hassib, M.; Fayed, H.A.; Aly, M.H. Performance evaluation of PDM/SAC-OCDMA-FSO communication system using DPS code under fog, dust and rain. Opt. Quantum Electron. 2022, 54, 750. [Google Scholar] [CrossRef]
- Armghan, A.; Singh, M.; Aliqab, K.; Alenezi, F.; Alsharari, M.; Ali, F.; Abd El-Mottaleb, S.A. Performance analysis of high-speed integrated OAM-OCDMA transmission in FSO communication link:Impact of weather attenuation. Opt. Quantum Electron. 2023, 55, 245. [Google Scholar] [CrossRef]
- Chaudhary, S.; Choudhary, S.; Tang, X.; Wei, X. Empirical evaluation of high-speed cost-effective Ro-FSO system by incorporating OCDMA-PDM scheme under the presence of fog. J. Opt. Commun. 2020, 39, 1–4. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, P.; Nebhen, J.; Chaudhary, S.; Sharma, A.; Malhotra, J.; Sharma, B. Performance analysis of mode division multiplexing-based free space optical systems for healthcare infrastructure’s. Opt. Quantum Electron. 2021, 53, 635–648. [Google Scholar] [CrossRef]
- Jeyaseelan, J.; Kumar, S.; Caroline, B. Performance analysis of free space optical communication system employing WDM-PoISK under turbulent weather conditions. J. Optoelectron. Adv. Mater. 2018, 20, 506–514. [Google Scholar]
- Upadhyay, K.K.; Srivastava, S.; Shukla, N.K.; Chaudhary, S. High-speed 120 Gbps AMI-WDM-PDM free space optical transmission system. J. Opt. Commun. 2019, 40, 429–443. [Google Scholar] [CrossRef]
- Singh, M.; Atieh, A.; Aly, M.H.; Abd El-Mottaleb, S.A. 120 Gbps SAC-OCDMA-OAM-based FSO transmission system: Performance evaluation under different weather conditions. Alex. Eng. J. 2022, 61, 10407–10418. [Google Scholar] [CrossRef]
- Muhammad, S.S.; Kohldorfer, P.; Leitgeb, E. Channel modeling for terrestrial free space optical links. In Proceedings of the 2005 7th International Conference Transparent Optical Networks, Barcelona, Spain, 3–7 July 2005; Volume 1, pp. 407–410. [Google Scholar]
- Nadeem, F.; Leitgeb, E.; Awan, M.S. Comparing the Snow Effects on Hybrid Network Using Optical Wireless and GHz Links. In Proceedings of the 2009 International Workshop on Satellite and Space Communications, Siena-Tuscany, Italy, 9–11 September 2009; pp. 171–175. [Google Scholar]
- Anuar, M.S.; Aljunid, S.A.; Saad, N.M.; Mohammed, A.; Babekir, E.I. Development of a zero cross-correlation code for spectral-amplitude coding optical code division multiple access (OCDMA). Int. J. Comput. Sci. Netw. Secur. 2006, 6, 180–184. [Google Scholar]
- Ahmed, G.; Djebbari, A. New Technique for Construction of a Zero Cross Correlation Code. Optik 2012, 123, 1382–1384. [Google Scholar] [CrossRef]
- Moghaddasi, M.; Mamdoohi, G.; Noor, A.S.M.; Mahdi, M.A.; Anas, S.B.A. Development of SAC-OCDMA in FSO with multi-wavelength laser source. Opt. Commun. 2015, 356, 282–289. [Google Scholar] [CrossRef]
- Anuar, M.S.; AlJunid, S.A.; Arief, A.R.; Junita, M.N.; Saad, N.M. PIN versus Avalanche photodiode gain optimization in zero cross correlation optical code division multiple access system. Optik 2013, 124, 371–375. [Google Scholar] [CrossRef]
Fog Conditions | LF | MF | HF |
---|---|---|---|
Attenuation coefficient (dB/km) | 10 | 18 | 27 |
Type of Snowfall | WSF | DSF |
---|---|---|
Attenuation coefficient (dB/km) | 13.73 | 96.8 |
Users | Wavelengths (nm) | |||||
---|---|---|---|---|---|---|
1550 | 1550.8 | 1551.6 | 1552.4 | 1553.2 | 1554 | |
Users 1, 4 | 0 | 0 | 0 | |||
Users 2, 5 | 0 | 0 | 0 | 0 | ||
Users 3, 6 | 0 | 0 | 0 | 0 |
Parameter | Value |
---|---|
Bit rate | 20 Gbps per user |
Number of users | 3 on and 3 on |
Electrical-Bandwidth | 15 Gbps |
CWL source transmit power | 15 dBm |
CWL source linewidth | 10 MHz |
Transmitter aperture diameter | 10 cm |
Receiver aperture diameter | 20 cm |
FSO range | CW: from 4 to 10 km LF: from 1 to 1.6 km MF: from 0.7 to 1 km HF: from 0.58 to 0.76 km WSF: from 1.05 to 1.2 km DSF: from 0.20 to 0.26 km |
PIN photodetector responsivity | 1 A/W |
Thermal noise power density | W/Hz |
Absolute temperature | 300 K |
Receiver load resistance | 1030 |
Users | Log(BER) | Q-Factor |
---|---|---|
1 on | −9.24 | 6.09 |
2 on | −11.22 | 6.77 |
3 on | −11.79 | 6.96 |
4 on | −10.09 | 6.39 |
5 on | −11.19 | 6.77 |
6 on | −12.55 | 7.21 |
Users | Log(BER) | Q-Factor (dB) | ||||
---|---|---|---|---|---|---|
LF (1.6 km) | MF (1 km) | HF (0.75 km) | LF (1.6 km) | MF (1 km) | HF (0.75 km) | |
1 on | −9.26 | −10.15 | −10.22 | 6.09 | 6.41 | 6.44 |
2 on | −10.69 | −11.30 | −11.11 | 6.60 | 6.80 | 6.74 |
3 on | −11.78 | −14.54 | −13.56 | 6.96 | 7.81 | 7.52 |
4 on | −9.18 | −10.63 | −9.83 | 6.06 | 6.58 | 6.30 |
5 on | −11.03 | −12 | −11.83 | 6.71 | 7.03 | 6.99 |
6 on | −12.07 | −14.43 | −12.40 | 7.05 | 7.77 | 7.16 |
Users | Log(BER) | Q-Factor | ||
---|---|---|---|---|
WSF (1.2 km) | DSF (0.26 km) | WSF (1.2 km) | DSF (0.26 km) | |
1 on | −10.99 | −9.70 | 6.70 | 6.25 |
2 on | −12.49 | −10.88 | 7.19 | 6.66 |
3 on | −14.43 | −13.61 | 7.77 | 7.53 |
4 on | −10.74 | −9.84 | 6.62 | 6.30 |
5 on | −12.40 | −11.12 | 7.16 | 6.74 |
6 on | −15.59 | −12.44 | 8.10 | 7.17 |
Ref. | Code Used in SAC-OCDMA with PDM | Code Property | Overall Transmission Capacity |
---|---|---|---|
[15] | EDW | Code weight any odd number >1 and unity cross-correlation which lead to the existence of MAI. | 60 Gbps |
[16] | RD | Code weight any real number >1, unity cross-correlation which lead to the existence of MAI and long code length that needs more components to implement | 100 Gbps |
Present work | ZCC | Code weight any real number >1, zero-cross correlation where no MAI exists, and can be easily implemented. | 120 Gbps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armghan, A.; Alsharari, M.; Aliqab, K.; Singh, M.; Abd El-Mottaleb, S.A. Performance Analysis of Hybrid PDM-SAC-OCDMA-Enabled FSO Transmission Using ZCC Codes. Appl. Sci. 2023, 13, 2860. https://doi.org/10.3390/app13052860
Armghan A, Alsharari M, Aliqab K, Singh M, Abd El-Mottaleb SA. Performance Analysis of Hybrid PDM-SAC-OCDMA-Enabled FSO Transmission Using ZCC Codes. Applied Sciences. 2023; 13(5):2860. https://doi.org/10.3390/app13052860
Chicago/Turabian StyleArmghan, Ammar, Meshari Alsharari, Khaled Aliqab, Mehtab Singh, and Somia A. Abd El-Mottaleb. 2023. "Performance Analysis of Hybrid PDM-SAC-OCDMA-Enabled FSO Transmission Using ZCC Codes" Applied Sciences 13, no. 5: 2860. https://doi.org/10.3390/app13052860
APA StyleArmghan, A., Alsharari, M., Aliqab, K., Singh, M., & Abd El-Mottaleb, S. A. (2023). Performance Analysis of Hybrid PDM-SAC-OCDMA-Enabled FSO Transmission Using ZCC Codes. Applied Sciences, 13(5), 2860. https://doi.org/10.3390/app13052860