Fluorescence Masking Based Multifunctional Quantum Dots’ Assay for HSP90α Interactions Detection
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Instrumentation
2.2. Fabrication of Sav-QDs Assays
2.3. Testing Protein–Ligand Interaction with and without Inhibitor
2.3.1. With Biotinylated ATP
2.3.2. With Radicicol and Biotinylated ATP
2.4. Testing Protein–Protein Interaction
2.4.1. Checking Sensitivity of the Assay
2.4.2. Confirming the Binding of Protein to Biotinylated Antibodies Attached to Sav-QDs
2.5. Checking Protein in Cell Lysate
2.5.1. Using Sav-QD Assay to Detect HSP90α in Cell Lysate
2.5.2. Confirming Presence of HSP90α in Cell Lysate with Western Blot
2.5.3. Confirming the Binding of HSP90α in Cell Lysate with Biotin-HSP90 Antibody
3. Results and Discussion
3.1. Human HSP90α Activity
3.2. Sav-QDs Assay
3.3. Testing Protein–Ligand Interaction with and without Inhibitor
3.3.1. With Biotinylated ATP
3.3.2. With Radicicol and Biotinylated ATP
3.4. Testing Protein–Protein Interaction
3.4.1. Checking the Sensitivity of the Assay
3.4.2. Confirming the Binding of Protein to Biotinylated Antibodies Attached to Sav-QDs
3.5. Checking Protein in Cell Lysate
3.5.1. Using Sav-QD Assay to Detect HSP90α in Cell Lysate
3.5.2. Confirming Presence of HSP90α in Cell Lysate with Western Blot
3.5.3. Confirming the Binding of HSP90α in Cell Lysate with Biotin-HSP90 Antibody
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Buchner, J. Structure, function and regulation of the Hsp90 machinery. Biomed. J. 2013, 36, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Tanguay, R.M. Antibodies against heat shock proteins in environmental stresses and diseases: Friend or foe? Cell Stress Chaperones. 2006, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kishore, A.; Fetter, A.; Zeilinger, C. Microarray-based screening of putative HSP90 inhibitors predicted and isolated from microorganisms. Methods Mol. Biol. 2022, 2489, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Neckers, L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol. Med. 2002, 8, S55–S61. [Google Scholar] [CrossRef] [PubMed]
- Zubrienė, A.; Gutkowska, M.; Matulienė, J.; Chaleckis, R.; Michailovienė, V.; Voroncova, A.; Venclovas, Č.; Zylicz, A.; Zylicz, M.; Matulis, D. Thermodynamics of radicicol binding to human Hsp90 alpha and beta isoforms. Biophys. Chem. 2010, 152, 153–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krüger, K.; Reichel, T.; Zeilinger, C. Role of heat shock proteins 70/90 in exercise physiology and exercise immunology and their diagnostic potential in sports. J. Appl. Physiol. 2019, 1, 916–927. [Google Scholar] [CrossRef]
- Takeuchi, T.; Suzuki, M.; Fujikake, N.; Popiel, H.A.; Kikuchi, H.; Futaki, S.; Wada, K.; Nagai, Y. Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level. Proc. Natl. Acad. Sci. USA 2015, 112, E2497–E2506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, V.; Han, S.; Brinker, A.; Klock, H.; Caldwell, J.; Gu, X.-J. A time-resolved fluorescence resonance energy transfer-based HTS assay and a surface plasmon resonance-based binding assay for heat shock protein 90 inhibitors. Anal. Biochem. 2004, 331, 349–357. [Google Scholar] [CrossRef]
- Kwon, O.S.; Hong, T.-J.; Kim, S.K.; Jeong, J.-H.; Hahn, J.-S.; Jang, J. Hsp90-functionalized polypyrrole nanotube FET sensor for anti-cancer agent detection. Biosens. Bioelectron. 2010, 25, 1307–1312. [Google Scholar] [CrossRef]
- Chen, H.; Xue, J.; Zhang, Y.; Zhu, X.; Gao, J.; Yu, B. Comparison of quantum dots immunofluorescence histochemistry and conventional immunohistochemistry for the detection of caveolin-1 and PCNA in the lung cancer tissue microarray. Mol. Hist. 2009, 40, 261–268. [Google Scholar] [CrossRef]
- Goldman, E.R.; Medintz, I.L.; Mattoussi, H. Luminescent quantum dots in immunoassays. Anal. Bioanal. Chem. 2006, 384, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Geho, D.; Lahar, N.; Gurnani, P.; Huebschman, M.; Herrmann, P.; Espina, V.; Shi, A.; Wulfkuhle, J.; Garner, H.; Petricoin, I.E.; et al. Pegylated, Steptavidin-conjugated Quantum dots are effective detection elements for reverse-phase protein microarrays. Bioconjugate Chem. 2005, 16, 559–566. [Google Scholar] [CrossRef]
- Li, M.; Chen, T.; Gooding, J.; Liu, J. Review of Carbon and Graphene Quantum dots for sensing. ACS Sens. 2019, 4, 1732–1748. [Google Scholar] [CrossRef]
- Himmelstoss, S.F.; Hirsch, T. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods Appl. Fluoresc. 2019, 7, 022002. [Google Scholar] [CrossRef] [PubMed]
- Mattoussi, H.; Mauro, J.M.; Goldman, E.R.; Anderson, G.P.; Sundar, V.C.; Mikulec, F.V.; Bawendi, M.G. Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 2000, 122, 12142–12150. [Google Scholar] [CrossRef]
- Goldman, E.; Balighian, E.; Kuno, M.; Labrenz, S.; Anderson, G.; Mauro, J.; Mattoussi, H. Luminescent quantum dot-adaptor protein-antibody conjugates for use in fluoroimmunoassays. Phys. Stat. Sol. 2002, 229, 407–414. [Google Scholar] [CrossRef]
- Lingerfelt, B.M.; Mattoussi, H.; Goldman, E.R.; Mauro, J.M.; Anderson, G.P. Preparation of quantum dot-biotin conjugates and their use in immunochromatography assays. Anal. Chem. 2003, 75, 4043–4049. [Google Scholar] [CrossRef] [PubMed]
- Frasco, F.M.; Chaniotakis, N. Semiconductor quantum dots in chemical sensors and biosensors. Sensors 2009, 9, 7266–7286. [Google Scholar] [CrossRef] [Green Version]
- Goldman, E.R.; Balighian, E.D.; Mattoussi, H.; Kuno, M.K.; Mauro, J.M.; Tran, P.T.; Anderson, G.P. Avidin: A natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 2002, 124, 6378–6382. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Stahl, F.; Plettenburg, O.; Kirschning, A.; Warnecke, A.; Zeilinger, C. The noncompetitive effect of Gambogic acid displaces fluorescence-labeled ATP but requires ATP for binding to Hsp90/HtpG. Biochemistry 2018, 57, 2601–2605. [Google Scholar] [CrossRef]
- Yüce, M.; Kurt, H. How to make nanobiosensors: Surface modification and characterisation of nanomaterials for biosensing applications. RSC Adv. 2017, 7, 49386–49403. [Google Scholar] [CrossRef] [Green Version]
- Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.; Park, S. Highly sensitive detection of dengue biomarker using streptavidin-conjugated quantum dots. Sci. Rep. 2021, 11, 15196. [Google Scholar] [CrossRef]
- Arrabito, G.; Pignataro, B. Inkjet printing methodologies for drug screening. Anal. Chem. 2010, 82, 3104–3107. [Google Scholar] [CrossRef]
- Sauer, U. Analytical protein microarrays: Advancements towards clinical applications. Sensors 2017, 17, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, L.; Kishore, A.; Jansen-Olliges, L.; Wang, D.; Stahl, F.; Psathaki, O.E.; Harre, J.; Warnecke, A.; Weder, J.; Preller, M.; et al. Identification of a Thyroid hormone binding site in Hsp90 with implications for its interaction with Thyroid hormone receptor beta. ACS Omega 2022, 7, 28932–28945. [Google Scholar] [CrossRef] [PubMed]
- Schax, E.; Walter, J.G.; Märzhäuser, H.; Stahl, F.; Scheper, T.; Agard, D.A.; Eichner, S.; Kirschning, A.; Zeilinger, C. Microarray-based screening of heat shock protein inhibitors. J. Biotechnol. 2014, 180, 1–9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kishore, A.; Fan, L.; Stahl, F.; Reichel, T.; Krüger, K.; Zeilinger, C. Fluorescence Masking Based Multifunctional Quantum Dots’ Assay for HSP90α Interactions Detection. Appl. Sci. 2023, 13, 2957. https://doi.org/10.3390/app13052957
Kishore A, Fan L, Stahl F, Reichel T, Krüger K, Zeilinger C. Fluorescence Masking Based Multifunctional Quantum Dots’ Assay for HSP90α Interactions Detection. Applied Sciences. 2023; 13(5):2957. https://doi.org/10.3390/app13052957
Chicago/Turabian StyleKishore, Anusha, Lu Fan, Frank Stahl, Thomas Reichel, Karsten Krüger, and Carsten Zeilinger. 2023. "Fluorescence Masking Based Multifunctional Quantum Dots’ Assay for HSP90α Interactions Detection" Applied Sciences 13, no. 5: 2957. https://doi.org/10.3390/app13052957
APA StyleKishore, A., Fan, L., Stahl, F., Reichel, T., Krüger, K., & Zeilinger, C. (2023). Fluorescence Masking Based Multifunctional Quantum Dots’ Assay for HSP90α Interactions Detection. Applied Sciences, 13(5), 2957. https://doi.org/10.3390/app13052957