The Use of Artificial Intelligence (AI) in Online Learning and Distance Education Processes: A Systematic Review of Empirical Studies
Abstract
:1. Introduction
2. Literature Review
- the general bibliometric outlook and;
- the research trends and patterns in the sampled publications?
3. Methods
3.1. Research Design
3.2. Inclusion Criteria and Sample
3.3. Data Analysis and Research Procedures
3.4. Strengths and Limitations
4. Findings and Discussions
4.1. A General Bibliometric Outlook
4.2. Research Trends and Patterns
4.2.1. Analysis of the Titles
4.2.2. Analysis of the Abstract and Keywords
5. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pelletier, K.; Brown, M.; Brooks, D.C.; McCormack, M.; Reeves, J.; Arbino, N.; Bozkurt, A.; Crawford, S.; Czerniewicz, L.; Gibson, R.; et al. Educause Horizon Report Teaching and Learning Edition. Educause. 2021. Available online: https://www.learntechlib.org/p/219489/ (accessed on 18 December 2022).
- Pelletier, K.; McCormack, M.; Reeves, J.; Robert, J.; Arbino, N.; Al-Freih, W.M.; Dickson-Deane, C.; Guevara, C.; Koster, L.; Sanchez-Mendiola, M.; et al. Educause Horizon Report Teaching and Learning Edition. Educause. 2022. Available online: https://www.learntechlib.org/p/221033/ (accessed on 17 December 2022).
- Zawacki-Richter, O.; Marín, V.I.; Bond, M.; Gouverneur, F. Systematic review of research on artificial intelligence applications in higher education–where are the educators? Int. J. Educ. Technol. High. Educ. 2019, 16, 39. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, F.; Zheng, L.; Jiao, P. Artificial intelligence in online higher education: A systematic review of empirical research from 2011 to 2020. Educ. Inf. Technol. 2022, 27, 7893–7925. [Google Scholar] [CrossRef]
- Tang, K.Y.; Chang, C.Y.; Hwang, G.J. Trends in artificial intelligence-supported e-learning: A systematic review and co-citation network analysis (1998–2019). Interact. Learn. Environ. 2021, 1–19. [Google Scholar] [CrossRef]
- Bozkurt, A.; Karadeniz, K.; Baneres, D.; Guerrero-Roldán, A.E.; Rodríguez, M.E. Artificial intelligence and reflections from educational landscape: A review of AI studies in half a century. Sustainability 2021, 13, 800. [Google Scholar] [CrossRef]
- Casas-Roma, J.; Conesa, J. A literature review on artificial intelligence and ethics in online learning. In Intelligent Systems and Learning Data Analytics in Online Education; Caballé, S., Demetriadis, S.N., Gómez-Sánchez, E., Papadopoulos, P.M., Weinberger, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 111–131. [Google Scholar] [CrossRef]
- Nassoura, A.B. Applied artificial intelligence applications in higher education institutions: A systematic review. Webology 2022, 19, 1168–1183. [Google Scholar]
- Gough, D.; Oliver, S.; Thomas, J. Introducing Systematic Reviews. In An Introduction to Systematic Reviews; Gough, D., Oliver, S., Thomas, J., Eds.; Sage: London, UK, 2012; pp. 1–18. [Google Scholar]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Fayyad, U.; Grinstein, G.G.; Wierse, A. (Eds.) Information Visualization in Data Mining and Knowledge Discovery; Morgan Kaufmann: San Francisco, CA, USA, 2002. [Google Scholar]
- Hansen, D.L.; Shneiderman, B.; Smith, M.A.; Himelboim, I. Analyzing Social Media Networks with Nodexl: Insights from a Connected World, 2nd ed.; Morgan Kaufmann: Cambridge, MA, USA, 2020. [Google Scholar]
- Aggarwal, C.C.; Zhai, C. Mining Text Data; Springer Science & Business Media: Boston, MA, USA, 2012. [Google Scholar] [CrossRef]
- van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Thurmond, V.A. The point of triangulation. J. Nurs. Scholarsh. 2001, 33, 253–258. [Google Scholar] [CrossRef]
- Scopus. Available online: https://www.elsevier.com/solutions/scopus/how-scopus-works/content (accessed on 13 July 2022).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 372, n71. [Google Scholar] [CrossRef]
- Smith, A.E.; Humphreys, M.S. Evaluation of unsupervised semantic mapping of natural language with Leximancer concept mapping. Behav. Res. Methods 2006, 38, 262–279. [Google Scholar] [CrossRef] [Green Version]
- Kotsiantis, S.; Pierrakeas, C.; Pintelas, P. Predicting students’ performance ın dıstance learnıng usıng machıne learning technıques. Appl. Artif. Intell. 2004, 18, 411–426. [Google Scholar] [CrossRef]
- Lykourentzou, I.; Giannoukos, I.; Nikolopoulos, V.; Mpardis, G.; Loumos, V. Dropout prediction in e-learning courses through the combination of machine learning techniques. Comput. Educ. 2009, 53, 950–965. [Google Scholar] [CrossRef]
- Tan, M.; Shao, P. Prediction of student dropout in e-Learning program through the use of machine learning method. Int. J. Emerg. Technol. Learn. 2015, 10, 11–17. [Google Scholar] [CrossRef]
- Wang, C. Emotion recognition of college students’ online learning engagement based on deep learning. Int. J. Emerg. Technol. Learn. 2022, 17, 110–122. [Google Scholar] [CrossRef]
- Ganidisastra, A.H.S.; Bandung, Y. An Incremental Training on Deep Learning Face Recognition for M-Learning Online Exam Proctoring. In Proceedings of the IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), Bandung, Indonesia, 8–10 April 2021. [Google Scholar] [CrossRef]
- Feng, X.; Wei, Y.; Pan, X.; Qiu, L.; Ma, Y. Academic emotion classification and recognition method for large-scale online learning environment—Based on A-CNN and LSTM-ATT deep learning pipeline method. Int. J. Environ. Res. Public Health 2020, 17, 1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Zhang, L.; He, T. Learning performance prediction-based personalized feedback in online learning via machine learning. Sustainability 2022, 14, 7654. [Google Scholar] [CrossRef]
- Luo, Y.; Han, X.; Zhang, C. Prediction of learning outcomes with a machine learning algorithm based on online learning behavior data in blended courses. Asia Pac. Educ. Rev. 2022, 1–19. [Google Scholar] [CrossRef]
- Park, H.S.; Yoo, S.J. Early dropout prediction in online learning of university using machine learning. Int. J. Inform. Vis. 2021, 5, 347–353. [Google Scholar] [CrossRef]
- Srisa-An, C.; Yongsiriwit, K. Applying machine learning and AI on self automated personalized online learning. In Fuzzy Systems and Data Mining; Tallón-Ballesteros, A.J., Ed.; IOS Press: Amsterdam, The Netherlands, 2019; Volume 5, pp. 137–145. [Google Scholar]
- Chetyrbok, P.V.; Shostak, M.A.; Alimova, L.U. Adaptive Learning Using Artificial Intelligence in Distance Education. In Proceedings of the Distance Learning Technologies, Yalta, Crimea, 16–21 September 2021. [Google Scholar]
- Adnan, M.; AlSaeed, D.H.; Al-Baity, H.H.; Rehman, A. Leveraging the power of deep learning technique for creating an intelligent, context-aware, and adaptive m-learning model. Complexity 2021, 2021, 5519769. [Google Scholar] [CrossRef]
- IEDMS. Educational Data Mining. Available online: https://educationaldatamining.org/ (accessed on 27 December 2022).
- Rodrigues, M.W.; Isotani, S.; Zárate, L.E. Educational data mining: A review of evaluation process in the e-learning. Telemat. Inform. 2018, 35, 1701–1717. [Google Scholar] [CrossRef]
- Mohamad, S.K.; Tasir, Z. Educational data mining: A review. Procedia Soc. Behav. Sci. 2013, 97, 320–324. [Google Scholar] [CrossRef] [Green Version]
- Romero, C.; Ventura, S. Educational data mining: A review of the state of the art. IEEE Trans. Syst. Man Cybern. C. Appl. Rev. 2010, 40, 601–618. [Google Scholar] [CrossRef]
- Dutt, A.; Ismail, M.A.; Herawan, T. A systematic review on educational data mining. IEEE Access 2017, 5, 15991–16005. [Google Scholar] [CrossRef]
- Romero, C.; Ventura, S. Educational data mining and learning analytics: An updated survey. WIREs 2021, 10, 1–21. [Google Scholar] [CrossRef]
- Bozkurt, A.; Sharma, R.C. Exploring the learning analytics equation: What about the carpe diem of teaching and learning? Asian J. Distance Educ. 2022, 17, i–xiv. [Google Scholar] [CrossRef]
- Clow, D. An overview of learning analytics. Teach. High. Educ. 2013, 18, 683–695. [Google Scholar] [CrossRef] [Green Version]
- Chatti, A.M.; Dyckoff, A.L.; Schroeder, U.; Thüs, H. A reference model for learning analytics. Int. J. Technol. Enhanc. Learn. 2013, 4, 318–331. [Google Scholar] [CrossRef]
- Salas-Pilco, S.Z.; Xiao, K.; Hu, X. Artificial intelligence and learning analytics in teacher education: A systematic review. Educ. Sci. 2022, 12, 569. [Google Scholar] [CrossRef]
- Istenič Starčič, A. Human learning and learning analytics in the age of artificial intelligence. Br. J. Educ. Tecnhol. 2020, 50, 2974–2976. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.F.; Yeh, Y.; Hung, Y.H.; Chang, R.I. Data mining for providing a personalized learning path in creativity: An application of decision trees. Comput. Educ. 2013, 68, 199–210. [Google Scholar] [CrossRef]
- Garrido, A.; Onaindia, E. Assembling learning objects for personalized learning: An AI planning perspective. IEEE Intell. Syst. 2013, 28, 64–73. [Google Scholar] [CrossRef]
- Kavitha, V.; Lohani, R.A. Critical study on the use of artificial intelligence, e-Learning technology and tools to enhance the learners experience. Clust. Comput. 2019, 22, 6985–6989. [Google Scholar] [CrossRef]
- Lee, C.A.; Tzeng, J.W.; Huang, N.F.; Su, Y.S. (2021). Prediction of student performance in massive open online courses using deep learning system based on learning behaviors. Educ. Technol. Soc. 2021, 24, 130–146. [Google Scholar]
- Winters, T.L.F. Educational Data Mining: Collection and Analysis of Score Matrices for Outcomes-Based Assessment. Ph.D. Thesis, University of California, Riverside, CA, USA, June 2006. (Order No. 3226576). Available online: https://www.proquest.com/dissertations-theses/educational-data-mining-collection-analysis-score/docview/305352728/se-2 (accessed on 23 February 2023).
- Prinsloo, P. Fleeing from Frankenstein’s monster and meeting Kafka on the way: Algorithmic decision-making in higher education. E-Learn. 2017, 14, 138–163. [Google Scholar] [CrossRef]
- Noble, S.U. Algorithms of Oppression: How Search Engines Reinforce Racism; New York University Press: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Zembylas, M. A decolonial approach to AI in higher education teaching and learning: Strategies for undoing the ethics of digital neocolonialism. Learn. Media Technol. 2021, 48, 25–37. [Google Scholar] [CrossRef]
- Gudivada, V.; Apon, A.; Ding, J. Data quality considerations for big data and machine learning: Going beyond data cleaning and transformations. Int. J. Adv. Soft. 2017, 10, 1–20. [Google Scholar]
- Xiao, J.; Wang, M.; Jiang, B.; Li, J. A personalized recommendation system with combinational algorithm for online learning. J. Ambient Intell. Humaniz. Comput. 2018, 9, 667–677. [Google Scholar] [CrossRef]
- Herlocker, J.L.; Konstan, J.A.; Terveen, L.G.; Riedl, J.T. Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 2004, 22, 5–53. [Google Scholar] [CrossRef]
- Klašnja-Milićević, A.; Ivanović, M.; Nanopoulos, A. Recommender systems in e-learning environments: A survey of the state-of-the-art and possible extensions. Artif. Intell. Rev. 2015, 44, 571–604. [Google Scholar] [CrossRef]
Research Corpus | |
Database | Scopus |
Period | 1999–2022 |
Search Queries | |
Subject-specific queries | TITLE (“artificial intelligence” OR “machine learning” OR “deep learning”) |
Boolean search parameter | AND |
Field-specific queries | TITLE (“distance education” OR “distance teaching” OR “distance learning” OR “remote education” OR “remote learning” OR “remote teaching” OR “online education” OR “online learning” OR “online teaching” OR “online course” OR “elearning” OR “e-learning” OR “m-learning” OR “edtech” OR “educational technology”) |
Identification | The total number of identified documents on Scopus (n = 301) |
Screening | Documents in other languages excluded (n = 2) |
Non-empirical documents excluded (total n = 18; book chapter [n = 16], editorial [n = 5], book [n = 1], erratum [n = 1]) | |
Included | A total of 276 papers (142 articles; 134 conference publications) included in the final research corpus. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogan, M.E.; Goru Dogan, T.; Bozkurt, A. The Use of Artificial Intelligence (AI) in Online Learning and Distance Education Processes: A Systematic Review of Empirical Studies. Appl. Sci. 2023, 13, 3056. https://doi.org/10.3390/app13053056
Dogan ME, Goru Dogan T, Bozkurt A. The Use of Artificial Intelligence (AI) in Online Learning and Distance Education Processes: A Systematic Review of Empirical Studies. Applied Sciences. 2023; 13(5):3056. https://doi.org/10.3390/app13053056
Chicago/Turabian StyleDogan, Murat Ertan, Tulay Goru Dogan, and Aras Bozkurt. 2023. "The Use of Artificial Intelligence (AI) in Online Learning and Distance Education Processes: A Systematic Review of Empirical Studies" Applied Sciences 13, no. 5: 3056. https://doi.org/10.3390/app13053056
APA StyleDogan, M. E., Goru Dogan, T., & Bozkurt, A. (2023). The Use of Artificial Intelligence (AI) in Online Learning and Distance Education Processes: A Systematic Review of Empirical Studies. Applied Sciences, 13(5), 3056. https://doi.org/10.3390/app13053056