Mercury Levels in Sediment, Water and Selected Organisms Collected in a Coastal Contaminated Environment: The Marano and Grado Lagoon (Northern Adriatic Sea, Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
3. Results
3.1. Total Hg and Speciation in Sediment
3.2. Total Dissolved Hg in Surface Waters
3.3. Total Hg in Biota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Clarkson, T.W. The toxicology of mercury. Crit. Rev. Clin. Lab. Sci. 1997, 34, 369–403. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, T.W.; Magos, L.; Myers, G.J. The toxicology of mercury-current exposures and clinical manifestations. N. Engl. J. Med. 2003, 349, 1731–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaffney, J.S.; Marley, N.A. In-depth review of atmospheric mercury: Sources, transformations, and potential sinks. Energy Emiss. Control. Technol. 2014, 2, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Gworek, B.; Bemowska-Kałabun, O.; Kijeńska, M.; Wrzosek-Jakubowska, J. Mercury in marine and oceanic waters—A review. Water Air Soil. Pollut. 2016, 227, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gworek, B.; Dmuchowski, W.; Baczewska-Dąbrowska, A.H. Mercury in the terrestrial environment: A review. Environ. Sci. Eur. 2020, 32, 128. [Google Scholar] [CrossRef]
- Beckers, F.; Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794. [Google Scholar] [CrossRef]
- Acquavita, A.; Floreani, F.; Covelli, S. Occurrence and speciation of arsenic and mercury in alluvial and coastal sediments. Curr. Opin. Environ. Sci. 2021, 22, 100272. [Google Scholar] [CrossRef]
- Acquavita, A.; Emili, A.; Covelli, S.; Faganeli, J.; Predonzani, S.; Koron, N.; Carrasco, L. The effects of resuspension on the fate of Hg in contaminated sediments (Marano and Grado Lagoon, Italy): Short-term simulation experiments. Estuar. Coast. Shelf Sci. 2012, 113, 32–40. [Google Scholar] [CrossRef]
- Bigham, G.N.; Murray, K.J.; Masue-Slowey, Y.; Henry, E.A. Biogeochemical controls on methylmercury in soils and sediments: Implications for sites management. Integr. Environ. Assess. Manag. 2017, 13, 249–263. [Google Scholar] [CrossRef]
- Rice, K.M.; Walker, E.M., Jr.; Wu, M.; Gillette, C.; Blough, E.R. Environmental mercury and its toxic effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Crespo-López, M.A.; Macêdo, G.L.; Pereira, S.I.D.; Arrifano, G.P.F.; Picanço-Diniz, D.L.W.; do Nascimento, J.L.M.; Herculano, A.M. Mercury and human genotoxicity: Critical considerations and possible molecular mechanisms. Pharmacol. Res. 2009, 60, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Semionov, A. Minamata disease—Review. World J. Neurosci. 2018, 8, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Minamata Convention on Mercury. Available online: https://www.mercuryconvention.org/en (accessed on 30 January 2023).
- Hylander, L.D.; Meili, M. 500 years of mercury production: Global annual inventory by region until 2000 and associated emissions. Sci. Total Environ. 2003, 304, 13–27. [Google Scholar] [CrossRef]
- Capodiferro, M.; Marco, E.; Grimalt, J.O. Wild fish and seafood species in the western Mediterranean Sea with low safe mercury concentrations. Environ. Pollut. 2022, 314, 120274. [Google Scholar] [CrossRef]
- Minas de Almadén. Available online: https://parqueminerodealmaden.es (accessed on 30 January 2023).
- Parco Museo Minerario di Abbadia San Salvatore. Available online: www.museominerario.it/2018/ (accessed on 30 January 2023).
- Idrija Unesco Dediščina. Available online: https://www.visit-idrija.si/en/experience/2019092609005398/unesco-mercury-story (accessed on 30 January 2023).
- Kotnik, J.; Sprovieri, F.; Ogrinc, N.; Horvat, M.; Pirrone, N. Mercury in the Mediterranean, part I: Spatial and temporal trends. Environ. Sci. Pollut. Res. 2014, 21, 4063–4080. [Google Scholar] [CrossRef]
- Kocman, D.; Vreča, P.; Fajon, V.; Horvat, M. Atmospheric distribution and deposition of mercury in the Idrija Hg mine region, Slovenia. Environ. Res. 2011, 111, 1–9. [Google Scholar] [CrossRef]
- Acquavita, A.; Brandolin, D.; Cattaruzza, C.; Felluga, A.; Maddaleni, P.; Meloni, C.; Pasquon, M.; Predonzani, S.; Poli, L.; Skert, N.; et al. Mercury distribution and speciation in historically contaminated soils of the Isonzo River Plain (NE Italy). J. Soils Sed. 2021, 22, 79–92. [Google Scholar] [CrossRef]
- Horvat, M.; Covelli, S.; Faganeli, J.; Logar, M.; Mandić, V.; Rajar, R.; Širca, A.; Žagar, D. Mercury in contaminated coastal environments; A case study: The Gulf of Trieste. Sci. Total Environ. 1999, 237–238, 43–56. [Google Scholar] [CrossRef]
- Gosar, M.; Teršič, T. Environmental geochemistry studies in the area of Idrija mercury mine, Slovenia. Environ. Geochem. Health 2012, 34, 27–41. [Google Scholar] [CrossRef]
- Covelli, S.; Faganeli, J.; Horvat, M.; Brambati, A. Mercury contamination of coastal sediments as the result of a long-term cinnabar mining activity (Gulf of Trieste, Northern Adriatic Sea). Appl. Geochem. 2001, 16, 541–558. [Google Scholar] [CrossRef]
- Acquavita, A.; Covelli, S.; Emili, A.; Berto, D.; Faganeli, J.; Giani, M.; Horvat, M.; Koron, N.; Rampazzo, F. Mercury in the sediments of the Marano and Grado Lagoon (northern Adriatic Sea): Sources, distribution and speciation. Estuar. Coast. Shelf Sci. 2012, 113, 20–31. [Google Scholar] [CrossRef]
- Dizdarevič, T. The influence of mercury production in Idrija mine on the environment in the Idrija region and over a broad area. RMZ-Mat. Geoenviron. 2001, 48, 56–64. [Google Scholar]
- Covelli, S.; Piani, R.; Acquavita, A.; Predonzani, S.; Faganeli, J. Transport and dispersion of particulate Hg associated to a river plume in coastal Northern Adriatic environments. Mar. Poll. Bull. 2007, 55, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Turitto, A.; Acquavita, A.; Bezzi, A.; Covelli, S.; Fontolan, G.; Petranich, E.; Piani, R.; Pillon, S. Suspended particulate mercury associated with tidal fluxes in a lagoon environment impacted by cinnabar mining activity (northern Adriatic Sea). J. Environ. Sci. 2018, 68, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Piani, R.; Covelli, S.; Biester, H. Mercury contamination in Marano Lagoon (Northern Adriatic sea, Italy): Source identification by analyses of Hg phases. Appl. Geochem. 2005, 20, 1546–1559. [Google Scholar] [CrossRef]
- Covelli, S.; Acquavita, A.; Piani, R.; Predonzani, S.; De Vittor, C. Recent contamination of mercury in an estuarine environment (Marano Lagoon, Northern Adriatic, Italy). Estuar. Coast. Shelf Sci. 2009, 82, 273–284. [Google Scholar] [CrossRef]
- Brambati, A. Coastal sediments and biota as indicators of Hg contamination in the Marano and Grado Lagoons. RMZ Mat. Geoenviron. 2001, 48, 165–171. [Google Scholar]
- Biester, H.; Gosar, M.; Covelli, S. Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija mercury mine, Slovenia. Environ. Sci. Technol. 2000, 34, 3330–3336. [Google Scholar] [CrossRef]
- Covelli, S. The MIRACLE Project: An integrated approach to understanding biogeochemical cycling of mercury and its relationship with lagoon farming. Estuar. Coast. Shelf Sci. 2012, 113, 1–6. [Google Scholar] [CrossRef]
- Covelli, S.; Langone, L.; Acquavita, A.; Piani, R.; Emili, A. Historical flux of mercury associated with mining and industrial sources in the Marano and Grado Lagoon (northern Adriatic Sea). Estuar. Coast. Shelf Sci. 2012, 113, 7–19. [Google Scholar] [CrossRef]
- Covelli, S.; Faganeli, J.; De Vittor, C.; Predonzani, S.; Acquavita, A.; Horvat, M. Benthic fluxes of mercury species in a lagoon environment (Grado Lagoon, Northern Adriatic Sea, Italy). Appl. Geochem. 2008, 23, 529–546. [Google Scholar] [CrossRef]
- Emili, A.; Acquavita, A.; Koron, N.; Covelli, S.; Faganeli, J.; Horvat, M.; Žižek, S. Benthic flux measurements of Hg species in a northern Adriatic lagoon environment (Marano and Grado Lagoon, Italy). Estuar. Coast. Shelf Sci. 2012, 113, 71–84. [Google Scholar] [CrossRef]
- Covelli, S.; Petranich, E.; Langone, L.; Emili, A.; Acquavita, A. Historical sedimentary trends of mercury and other trace elements from two saltmarshes of the Marano and Grado lagoon (northern Adriatic Sea). J. Soils Sed. 2017, 17, 1972–1985. [Google Scholar] [CrossRef]
- Petranich, E.; Terribili, L.; Acquavita, A.; Pavoni, E.; Langone, L.; Covelli, S. The role of a tidal-flat saltmarsh system as a source-sink of mercury in a contaminated coastal lagoon environment (northern Adriatic Sea). Aquat. Geochem. 2020, 26, 245–267. [Google Scholar] [CrossRef]
- Issaro, N.; Abi-Ghanem, C.; Bermond, A. Fractionation studies of mercury in soils and sediments: A review of the chemical reagents used for mercury extraction. Anal. Chim. Acta 2009, 631, 1–12. [Google Scholar] [CrossRef]
- Sladonja, B.; Bettoso, N.; Zentilin, A.; Tamberlich, F.; Acquavita, A. Manila clam (Tapes philippinarum Adams & Reeve, 1852) in the Lagoon of Marano and Grado (Northern Adriatic Sea, Italy): Socio-economic and environmental pathway of a shell farm. In Aquaculture and the Environment—A Shared Destiny; Sladonja, B., Ed.; Tech Open Publishers: Rijeka, Croatia, 2011; pp. 51–78. [Google Scholar]
- Mozaffarian, D.; Rimm, E.B. Fish intake, contaminants, and human health. Evaluating the risks and the benefits. JAMA 2006, 296, 1886–1900. [Google Scholar] [CrossRef] [Green Version]
- Sfriso, A.; Argese, E.; Bettiol, C.; Facca, C. Tapes philippinarum seed exposure to metals in polluted area of the Venice lagoon. Estuar. Coast. Shelf Sci. 2008, 79, 581–590. [Google Scholar]
- Giani, M.; Rampazzo, F.; Berto, D.; Maggi, C.; Mao, A.; Horvat, M.; Emili, A.; Covelli, S. Bioaccumulation of mercury in reared and wild Ruditapes philippinarum of a Mediterranean lagoon. Estuar. Coast. Shelf Sci. 2012, 113, 116–125. [Google Scholar] [CrossRef]
- Acquavita, A.; Bettoso, N. Mercury and selenium in the grass goby Zoosterisessor ophiocephalus (Pisces: Gobiidae) from a mercury contaminated lagoon. Mar. Poll. Bull. 2018, 135, 75–82. [Google Scholar] [CrossRef]
- European Community. Commission Regulation No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Europ. Union 2006, L 364, 5–24. [Google Scholar]
- WFD. European Commission Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Comm. 2000, L 327, 1–72. [Google Scholar]
- Bloom, N.S.; Preus, E.; Katon, J. Selective extractions to assess the biogeochemically relevant fractionations of inorganic mercury in sediments and soils. Anal. Chim. Acta 2003, 479, 233–248. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geoj. 1969, 2, 108–118. [Google Scholar]
- Long, E.R.; MacDonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuaries sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Long, E.R.; Field, L.J.; MacDonald, D.D. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ. Toxicol. Chem. 1998, 17, 714–727. [Google Scholar] [CrossRef]
- Franco, A.; Elliott, M.; Franzoi, P.; Torricelli, P. Life strategies of fishes in European estuaries: The functional guild approach. Mar. Ecol. Prog. Ser. 2008, 354, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Arnot, J.A.; Gobas, F.A.P.C. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ. Rev. 2006, 14, 257–297. [Google Scholar] [CrossRef]
- Barone, G.; Storelli, A.; Garofalo, R.; Busco, V.P.; Quaglia, N.C.; Centrone, G.; Storelli, M.M. Assessment of mercury and cadmium via seafood consumption in Italy: Estimated dietary intake (EWI) and target hazard quotient (THQ). Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2015, 32, 1277–1286. [Google Scholar] [CrossRef]
- Ramsar. Available online: https://www.ramsar.org/ (accessed on 30 January 2023).
- Ramieri, E.; Barbanti, A.; Picone, M.; Menchini, G.; Bressan, E.; Dal Forno, E. Integrated plan for the sustainable management of the Lagoon of Marano and Grado. In Proceedings of the Littoral—Adapting to Global Change at the Coast: Leadership, Innovation, and Investment, London, UK, 21–23 September 2010; Available online: http://coastnet-littoral2010.edpsciences.org/articles/litt/pdf/2011/01/litt-05008.pdf (accessed on 30 January 2023).
- Fontolan, G.; Pillon, S.; Bezz, A.; Villalta, R.; Lipizer, M.; Triches, A.; D’Aietti, A. Human impact and the historical transformation of saltmarshes in the Marano and Grado Lagoon, northern Adriatic Sea. Estuar. Coast Shelf Sci. 2012, 113, 41–56. [Google Scholar] [CrossRef]
- Bettoso, N.; Aleffi, I.F.; Faresi, L.; D’Aietti, A.; Acquavita, A. Macrozoobenthos monitoring in relation to dredged sediment disposal: The case of the Marano and Grado Lagoon (northern Adriatic Sea, Italy). Reg. Stud. Environ. Sci. 2020, 33, 100916. [Google Scholar] [CrossRef]
- Pittaluga, F.; Aleffi, I.F.; Bettoso, N.; Blasutto, O.; Celio, M.; Codarin, A.; Cumani, F.; Faresi, L.; Guiatti, D.; Orlandi, C.; et al. The SHAPE Project: An innovative approach to understanding seasonal and diel dissolved oxygen dynamics in the Marano and Grado Lagoon (Adriatic Sea) under the WFD/2000/60/CE. J. Mar. Sci. Eng. 2022, 10, 208. [Google Scholar] [CrossRef]
- Saccon, P.; Leis, A.; Marca, A.; Kaiser, J.; Campisi, L.; Böttcher, M.E.; Savarino, J.; Escher, P.; Eisenhauer, A.; Erbland, J. Multi-isotope approach for the identification and characterisation of nitrate pollution sources in the Marano lagoon (Italy) and parts of its catchment area. Appl. Geochem. 2013, 34, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Acquavita, A.; Aleffi, I.F.; Benci, C.; Bettoso, N.; Crevatin, E.; Milani, L.; Tamberlich, F.; Toniatti, L.; Barbieri, P.; Licen, S.; et al. Annual characterization of the nutrients and trophic state in a Mediterranean coastal lagoon: The Marano and Grado Lagoon (northern Adriatic Sea). Reg. Stud. Environ. Sci. 2015, 2, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Bonometto, A.; Ponis, E.; Cacciatore, F.; Riccardi, E.; Pigozzi, S.; Parati, P.; Novello, M.; Ungaro, N.; Acquavita, A.; Manconi, P.; et al. A new multi-index method for the eutrophication assessment in transitional waters: Large-scale implementation in Italian lagoons. Environments 2022, 9, 41. [Google Scholar] [CrossRef]
- Ministero dell’Ambiente e della Tutela del Territorio e del Mare. Regolamento recante i criteri tecnici per la classificazione dello stato dei corpi idrici superficiali, per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n. 152, recante norme in materia ambientale, predisposto ai sensi dell’articolo 75, comma 3, del medesimo decreto legislativo. In GU Serie Generale n.30 del 07-02-2011 – Suppl. ordinario n.31; Ministero dell’Ambiente e della Tutela del Territorio e del Mare: Roma, Italia, 2010. [Google Scholar]
- EPA. Method 7473. Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrometry; EPA: Washington, DC, USA, 2007; p. 17. [Google Scholar]
- EPA. Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapour Atomic Fluorescence Spectrometry; EPA: Washington, DC, USA, 2002; p. 38. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Paleontological statistics software package for education and data analysis. Paleontol. Electronica 2001, 4, 9. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 1996; p. 662. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Van Nostrand Reinhold: New York, NY, USA, 1987; p. 336. [Google Scholar]
- Brambati, A. Metalli Pesanti Nelle Lagune di Marano e Grado. Regione Autonoma Friuli Venezia Giulia; Technical Report; Regione Autonoma Friuli Venezia Giulia - Direzione dell’Ambiente - Servizio dell’Idraulica: Trieste, Italia, 1997; p. 174. (in Italian) [Google Scholar]
- Covelli, S.; Emili, A.; Acquavita, A.; Koron, N.; Faganeli, J. Benthic biogeochemical cycling of mercury in two contaminated northern Adriatic coastal lagoons. Cont. Shelf Res. 2011, 31, 1777–1789. [Google Scholar] [CrossRef]
- Petranich, E.; Covelli, S.; Acquavita, A.; Faganeli, J.; Horvat, M.; Contin, M. Evaluation of mercury biogeochemical cycling at the sediment–water interface in anthropogenically modified lagoon environments. J. Environ. Sci. 2018, 68, 5–23. [Google Scholar] [CrossRef]
- Cossa, D.; Knoery, J.; Bănaru, D.; Harmelin-Vivien, M.; Sonke, J.E.; Hedgecock, I.M.; Bravo, A.G.; Rosati, G.; Canu, D.; Horvat, M.; et al. Mercury Mediterranean assessment 2022: An updated budget, health consequences, and research perspectives. Environ. Sci. Technol. 2022, 56, 3840–3862. [Google Scholar] [CrossRef]
- Donazzolo, R.; Hieke Merlin, O.; Menegazzo Vitturi, L.; Pavoni, B. Heavy metal content and lithological properties of recent sediments in the Northern Adriatic. Mar. Poll. Bull. 1984, 15, 93–101. [Google Scholar] [CrossRef]
- Guerzoni, S.; Tagliapietra, D. Atlas of the Lagoon: Venice between Land and Sea (in Italian)-Atlante della Laguna: Venezia tra Terra e Mare, 1st ed.; Marsilio: Venice, Italy, 2003. [Google Scholar]
- Bloom, N.S.; Moretto, L.M.; Scopece, P.; Ugo, P. Seasonal cycling of mercury and monomethyl mercury in the Venice Lagoon (Italy). Mar. Chem. 2004, 91, 85–99. [Google Scholar] [CrossRef]
- Berto, D.; Giani, M.; Covelli, S.; Boscolo, R.; Cornello, M.; Macchia, S.; Massironi, M. Mercury in sediments and Nassarius reticulatus (Gastropoda Prosobranchia) in the southern Venice Lagoon. Sci. Total Environ. 2006, 368, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Zonta, R.; Botter, M.; Cassin, D.; Bellucci, L.G.; Pini, R.; Dominik, J. Sediment texture and metal contamination in the Venice Lagoon (Italy): A snapshot before the installation of the MOSE system. Estuar. Coast. Shelf Sci. 2018, 205, 131–151. [Google Scholar] [CrossRef]
- Frontalini, F.; Buosi, C.; Da Pelo, S.; Coccioni, R.; Cherchi, A.; Bucci, C. Benthic foraminifera as bio-indicators of trace element pollution in the heavily contaminated Santa Gilla lagoon (Cagliari, Italy). Mar. Poll. Bull. 2009, 58, 858–877. [Google Scholar] [CrossRef]
- Miserocchi, S.; Langone, L.; Guerzoni, S. The fate of Hg contaminated sediments of the Ravenna Lagoon (Italy): Final burial or potential remobilization. Water Sci. Technol. 1993, 28, 349–358. [Google Scholar] [CrossRef]
- Fabbri, D.; Gabbianelli, G.; Locatelli, C.; Lubrano, D.; Trombini, C.; Vassura, I. Distribution of mercury and other heavy metals in core sediments of the Northern Adriatic Sea. Water Air Soil Pollut. 2001, 129, 143–153. [Google Scholar] [CrossRef]
- Trombini, C.; Fabbri, D.; Lombardo, M.; Vassura, I.; Zavoli, E.; Horvat, M. Mercury and methylmercury contamination in surficial sediments and clams of a coastal lagoon (Pialassa Baiona, Ravenna, Italy). Cont. Shelf Res. 2003, 23, 1821–1831. [Google Scholar] [CrossRef]
- Matteucci, G.; Rossini, P.; Guerzoni, S.; Arcangeli, A.; Fonti, P.; Langone, L.; Miserocchi, S. Recent evolution of sedimentary heavy metals in a coastal lagoon contaminated by industrial wastewaters (Pialassa Baiona, Ravenna, Italy). Hydrobiologia 2005, 550, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Guerra, R.; Pasteris, A.; Ponti, M. Impacts of maintenance channel dredging in a northern Adriatic coastal lagoon. I. Effects on sediment properties, contamination and toxicity. Estuar. Coast. Shelf Sci. 2009, 85, 134–142. [Google Scholar] [CrossRef]
- Pepi, M.; Gaggi, C.; Bernardini, E.; Focardi, S.; Lobianco, A.; Ruta, M.; Nicolardi, V.; Volterrani, M.; Gasperini, S.; Trinchera, G.; et al. Mercury-resistant bacterial strains Pseudomonas and Psychrobacter spp. isolated from sediments of Orbetello Lagoon (Italy) and their possible use in bioremediation processes. Int. Biodeter. 2011, 65, 85–91. [Google Scholar] [CrossRef]
- Ponti, M.; Casselli, C.; Abbiati, M. Anthropogenic disturbance and spatial heterogeneity of macrobenthic inverte-brate assemblages in coastal lagoons: The study case of Pialassa Baiona (northern Adriatic Sea). Helgol Mar. Res. 2011, 65, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Renzi, M.; Guerranti, G. Seasonal fluctuations of trace elements from different habitats of Orbetello Lagoon (Thyrrenian Sea, Italy). Arch. Environ. Contam. Toxicol. 2018, 18, 92–113. [Google Scholar] [CrossRef] [PubMed]
- Renzi, M.; Specchiulli, A.; Baroni, D.; Scirocco, T.; Cilenti, L.; Focardi, S.; Breber, P.; Focardi, S. Trace elements in sediments and bioaccumulation in European silver eels (Anguilla anguilla L.) from a Mediterranean lagoon (SE Italy). Int. J. Environ. Anal. Chem. 2011, 92, 676–697. [Google Scholar] [CrossRef]
- Frontalini, F.; Coccioni, R.; Bucci, C. Benthic foraminiferal assemblages and trace element contents from the lagoons of Orbetello and Lesina. Environ. Monit. Assess. 2010, 170, 245–260. [Google Scholar] [CrossRef]
- Vizzini, S.; Costa, V.; Tramati, C.; Giangiuzza, P.; Mazzola, A. Trophic transfer of trace elements in an isotopically constructed food chain from a semi-enclosed marine coastal area (Stagnone di Marsala, Sicily, Mediterranean). Arch. Environ. Contam. Toxicol. 2013, 65, 642–653. [Google Scholar] [CrossRef] [Green Version]
- Accornero, A.; Gnerre, R.; Manfra, L. Sediment concentrations of trace metals in the Berre Lagoon (France): An assessment of contamination. Arch. Environ. Contam. Toxicol. 2008, 54, 372–385. [Google Scholar] [CrossRef]
- Rigaud, S.; Garnier, J.-M.; Moreau, X.; De Jong-Moreau, L.; Mayot, N.; Chaurand, P.; Radakovitch, O. How to assess trace elements bioavailability for benthic organisms in lowly to moderately contaminated coastal sediments? Mar. Poll. Bull. 2019, 140, 86–100. [Google Scholar] [CrossRef] [Green Version]
- Mzoughi, N.; Stoichev, T.; Dachrouni, M.; El Abed, A.; Amoroux, D.; Donard, O.F.X. Inorganic mercury and methylmercury in surface sediments and mussel tissues from a microtidal lagoon (Bizerte, Tunisia). J. Coast. Conserv. 2002, 8, 141–145. [Google Scholar] [CrossRef]
- El Zrelli, R.; Yacoubi, L.; Wakkaf, T.; Castet, S.; Grégoire, M.; Mansour, L.; Courjault-Radé, P.; Raboufi, L. Surface sediment enrichment with trace metals in a heavily human-impacted lagoon (Bizerte Lagoon, Southern Mediterranean Sea): Spatial distribution, ecological risk assessment, and implications for environmental protection. Mar. Poll. Bull. 2021, 169, 112512. [Google Scholar] [CrossRef]
- Xu, J.; Bland, G.D.; Gu, Y.; Ziaei, H.; Xiao, X.; Deonarine, A.; Reible, D.; Bireta, P.; Hoelen, T.P.; Lowry, G.V. Impact of sediment particle grain size and mercury speciation on mercury bioavailability potential. Environ. Sci. Technol. 2021, 55, 12393–12402. [Google Scholar] [CrossRef]
- Covelli, S.; Petranich, E.; Pavoni, E.; Signore, S. Can sediments contaminated by mining be source of mercury in the coastal environment due to dredging? Evidence from thermos-desorption and chemical speciation. Bull. Environ. Contam. Toxicol. 2021, 106, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Emili, A.; Acquavita, A.; Covelli, S.; Spada, L.; Di Leo, A.; Giandomenico, S.; Cardellicchio, N. Mobility of heavy metals from polluted sediments of a semi-enclosed basin: In situ benthic chamber experiments in Taranto’s Mar Piccolo (Ionian Sea, Southern Italy). Environ. Sci. Pollut. Res. 2016, 23, 12582–12595. [Google Scholar] [CrossRef] [PubMed]
- Emili, A.; Carrasco, L.; Acquavita, A.; Covelli, S. A laboratory-incubated redox oscillation experiment to investigate Hg fluxes from highly contaminated coastal marine sediments (Gulf of Trieste, Northern Adriatic Sea). Environ. Sci. Pollut. Res. 2014, 21, 4124–4133. [Google Scholar] [CrossRef] [PubMed]
- Frohne, T.; Rinklebe, J. Biogeochemical fractions of mercury in soil profiles of two different floodplain ecosystems in Germany. Water Air Soil Poll. 2013, 22, 1591–1607. [Google Scholar] [CrossRef]
- Gordeeva, O.N.; Belogolova, G.A.; Pastukhov, M.V. Mercury speciation and mobility in soils of industrial areas in the Baikal region, Southern Siberia, Russia. Environ. Earth Sci. 2017, 76, 558–568. [Google Scholar] [CrossRef]
- Morel, F.M.M.; Kraepiel, A.M.L.; Amyot, M. The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Syst. 1998, 29, 543–566. [Google Scholar] [CrossRef] [Green Version]
- Kocman, D.; Horvat, M.; Kotnik, J. Mercury fractionation in contaminated soils from the Idrija mercury mine region. J. Environ. Monitor. 2004, 6, 696–703. [Google Scholar] [CrossRef]
- Ferrarin, C.; Umgiesser, G.; Scroccaro, I.; Mattassi, G. Hydrodynamic modeling of the lagoons of Marano and Grado, Italy. GeoEcoMarina 2009, 15, 13–19. [Google Scholar]
- Pavoni, E.; Petranich, E.; Signore, S.; Fontolan, G.; Covelli, S. The legacy of the Idrija mine twenty-five years after closing: Is mercury in the water column of the Gulf of Trieste still an environmental issue? Int. J. Environ. Res. Public Health 2021, 18, 10192. [Google Scholar] [CrossRef]
- Faganeli, J.; Horvat, M.; Covelli, S.; Fajon, V.; Logar, M.; Lipej, L.; Cermelj, B. Mercury and methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Sci. Total Environ. 2003, 304, 315–326. [Google Scholar] [CrossRef]
- Pavoni, E.; Crosera, M.; Petranich, E.; Adami, G.; Faganeli, J.; Covelli, S. Partitioning and mixing behaviour of trace elements at the Isonzo/Soča River mouth (Gulf of Trieste, northern Adriatic Sea). Mar. Chem. 2020, 223, 103800. [Google Scholar] [CrossRef]
- Pavoni, E.; Crosera, M.; Petranich, E.; Faganeli, J.; Klun, K.; Oliveri, P.; Covelli, S.; Adami, G. Distribution, mobility and fate of trace elements in an estuarine system under anthropogenic pressure: The case of the Karstic Timavo River (Northern Adriatic Sea, Italy). Estuar. Coast. 2021, 44, 1831–1847. [Google Scholar] [CrossRef]
- Horvat, M.; Kotnik, J.; Logar, M.; Fajon, V.; Zvonarić, T.; Pirrone, N. Speciation of mercury in surface and deep-sea waters in the Mediterranean Sea. Atmos. Environ. 2003, 37, S93–S108. [Google Scholar] [CrossRef]
- McLusky, D.S.; Elliott, M. The Estuarine Ecosystem: Ecology, Threats and Management, 3rd ed.; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Cavraro, F.; Bettoso, N.; Zucchetta, M.; D’Aietti, A.; Faresi, L.; Franzoi, P. Body condition in fish as a tool to detect the effects of anthropogenic pressures in transitional waters. Aquat. Ecol. 2019, 53, 21–35. [Google Scholar] [CrossRef]
- Bartulović, V.B.; Glamuzina, A.; Conides, J.; Dulčić, D.; Lučić, J.; Njire, V.; Kožul, V. Age, growth, mortality and sex ratio of sand smelt, Atherina boyeri Risso, 1810 (Pisces: Atherinidae) in the estuary of the Mala Neretva River (middle eastern Adriatic, Croatia). J. Appl. Ichthyol. 2004, 20, 427–430. [Google Scholar] [CrossRef]
- Koutrakis, E.T.; Kamidis, N.I.; Leonardos, I.D. Age, growth and mortality of a semi-isolated lagoon population of sand smelt, Atherina boyeri (Risso, 1810) (Pisces: Atherinidae) in an estuarine system of northern Greece. J. Appl. Ichthyol. 2004, 20, 382–388. [Google Scholar] [CrossRef]
- Bettoso, N.; Acquavita, A.; D’Aietti, A.; Mattassi, G. The Marano and Grado Lagoon: A brief synopsis on the aquatic fauna and fisheries resources. Annales Ser. Hist. Nat. 2013, 23, 135–142. [Google Scholar]
- Gandolfi, G.; Torricelli, P.; Cau, A. Observations on the biology of the black-spotted goby, Pomatoschistus canestrinii (Ninni). Nova Thalass. 1982, 5, 97–123. [Google Scholar]
- Franco, A.; Franzoi, P.; Malavasi, S.; Riccato, F.; Torricelli, P.; Mainardi, D. Use of shallow water habitats by fish assemblages in a Mediterranean coastal lagoon. Estuar. Coast. Shelf Sci. 2005, 66, 67–83. [Google Scholar] [CrossRef]
- European Community. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. European Union 1992, 206, 7–50. [Google Scholar]
- Lipej, L.; Turk, R.; Makovec, T. Endangered Species and Habitat Types in the Slovenian Sea; Zavod RS za varstvo narave: Ljubljana, Slovenia, 2006. [Google Scholar]
- Zander, C.D. Blenniidae. In Fishes of the north-eastern Atlantic and Mediterranean; Whitehead, P.J.P., Bauchot, M.L., Hureau, J.C., Nielsen, J., Tortonese, E., Eds.; UNESCO: Paris, France, 1986; pp. 1096–1112. [Google Scholar]
- Jardas, I. Jadranska Ihtiofauna; Školska knjiga: Zagreb, Croatia, 1996; p. 533. [Google Scholar]
- Franco, A.; Malavasi, S.; Pranovi, F.; Franzoi, P.; Torricelli, P. Age and reproductive investment in grass goby females in the Venice lagoon. Environ. Biol. Fish. 2012, 93, 419–425. [Google Scholar] [CrossRef]
- Louiz, I.; Ben Attia, M.; Ben Hassine, O.K. Cycle de reproduction et maturité sexuelle de Zosterisessor ophio-cephalus (Gobiidae) des côtes Nord de la Tunisie (Lagune de Bizerte). Rev. Fac. Sci. Bizerte 2013, 11, 86–99. [Google Scholar]
- Potter, I.C.; Tweedley, J.R.; Elliott, M.; Whitfield, A.K. The ways in which fish use estuaries: A refinement and expansion of the guild approach. Fish Fish. 2015, 16, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Lochet, I.C.; Maury-Brachet, R.; Poirier, C.; Tomás, J.; Lahaye, M.; Aprahamian, M.; Rochard, E. Mercury contamination and life history traits of Allis shad Alosa alosa (Linnaeus, 1758) and Twaite shad Alosa fallax (Lacépède, 1803) in the Gironde estuary (South West France). Hydrobiologia 2008, 602, 99–109. [Google Scholar] [CrossRef]
- Živković, I.; Šolić, M.; Kotnik, J.; Žižek, S.; Horvat, M. The abundance and speciation of mercury in the Adriatic plankton, bivalves and fishes—A review. Acta Adriat. 2017, 58, 391–420. [Google Scholar] [CrossRef]
- Bilandžić, N.; Dokić, M.; Sedak, M. Metal content determination in four fish species from the Adriatic Sea. Food Chem. 2011, 124, 1005–1010. [Google Scholar] [CrossRef]
- Lahaye, V.; Bustamante, P.; Dabin, W.; van Canneyt, O.; Dhermain, F.; Cesarini, C.; Pierce, G.J.; Caurant, F. New insights from age determination on toxic element accumulation in striped and bottlenose dolphins from Atlantic and Mediterranean waters. Mar. Pollut. Bull. 2006, 52, 1219–1230. [Google Scholar] [CrossRef] [Green Version]
- Mieiro, C.L.; Pacheco, M.; Pereira, M.E.; Costa Duarte, A. Mercury distribution in key tissues of fish (Liza aurata) inhabiting a contaminated estuary—Implications for human and ecosystem health risk assessment. J. Environ. Monit. 2009, 11, 1004–1012. [Google Scholar] [CrossRef] [Green Version]
- Mancini, L.; Miniero, R.; Beccaloni, E.; di Domenico, K.; Lacchetti, I.; Puccinelli, C.; Cicero, M.R.; Scaini, F.; Carere, M. Mercury (Hg) and methylmercury (MeHg) in sediment and biota: A case study in a lagoon in Central Italy. Mar. Poll. Bull. 2022, 175, 113308. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture. Opportunities and Challenges; FAO: Rome, Italy, 2014; Available online: https://www.fao.org/3/i3720e/i3720e.pdf (accessed on 30 January 2023).
- USEPA; Food and Drug Administration (FDA). Advice about Eating Fish; US EPA: Washington, DC, USA; FDA: Silver Spring, MD, USA, 2021. Available online: https://www.fda.gov/media/102331/download (accessed on 30 January 2023).
- Admirah, M.N.; Afiza, A.S.; Faizal, W.I.W.; Nurliyana, M.H.; Laili, S. Human health risk assessment of metal contamination through consumption of fish. J. Environ. Poll. Hum. Health 2013, 1, 1–15. [Google Scholar]
- La Torre, G.L.; Cicero, N.; Bartolomeo, G.; Rando, R.; Vadalà, R.; Santini, A.; Durazzo, A.; Lucarini, M.; Dugo, G.; Salvo, A. Assessment and monitoring of fish quality from a coastal ecosystem under high anthropic pressure: A case study in southern Italy. Int. J. Environ. Res. Public Health 2020, 17, 3285. [Google Scholar] [CrossRef] [PubMed]
- Bloom, N.S.; Lasorsa, B. Changes in mercury speciation and the release of methylmercury as a result of marine sediment dredging activities. Sci. Total Environ. 1999, 237/238, 379–385. [Google Scholar] [CrossRef]
- Kim, E.-H.; Mason, R.P.; Porter, E.T.; Soulen, H.L. The effect of resuspension on the fate of total mercury and methylmercury in a shallow estuarine ecosystem: A mesocosm study. Mar. Chem. 2004, 86, 121–137. [Google Scholar] [CrossRef]
- Kim, E.-H.; Mason, R.P.; Porter, E.T.; Soulen, H.L. The impact of resuspension on sediment mercury dynamics, and methylmercury production and fate: A mesocosm study. Mar. Chem. 2006, 102, 300–315. [Google Scholar] [CrossRef]
- Clarkson, T.W. Human toxicology of mercury. J. Trace Elem. Exp. Med. 1999, 11, 303–317. [Google Scholar] [CrossRef]
- Petrova, M.V.; Ourgaud, M.; Boavida, J.R.H.; Dufour, A.; Onrubia, J.A.T.; Lozingot, A.; Heimbürger-Boavida, L.-E. Human mercury exposure levels and fish consumption at the French Riviera. Chemosphere 2020, 258, 127232. [Google Scholar] [CrossRef]
- Ravichandran, M. Interaction between mercury and dissolved organic matter-a review. Chemosphere 2004, 55, 319–331. [Google Scholar] [CrossRef]
- Bussan, D.D.; Douvris, C.; Cizdiel, J.V. Mercury methylation potential in sediments of an ancient cypress wetland using specie-specific isotope dilution GC-ICP-MS. Molecules 2022, 27, 4911. [Google Scholar] [CrossRef]
- Hammerschmidt, C.R.; Fitzgerald, W.F. Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ. Sci. Technol. 2004, 38, 1487–1495. [Google Scholar] [CrossRef]
- Barbone, F.; Valent, F.; Pisa, F.; Daris, F.; Fajon, V.; Gibicar, D.; Logar, M.; Horvat, M. Prenatal low-level methyl mercury exposure and child development in an Italian coastal area. SMDJ 2004, 7, 149–154. [Google Scholar] [CrossRef]
- Vecchi Brumatti, L.; Rosolen, V.; Mariuz, M.; Piscianz, E.; Valencic, E.; Bin, M.; Athanasakis, E.; D’Adamo, P.; Fragkiadoulaki, E.; Calamandrei, G.; et al. Impact of methylmercury and other heavy metal exposure on neurocognitive function in children aged 7 years: Study protocol of the follow-up. J. Epidemiol. 2021, 31, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cegolon, L.; Petranich, E.; Pavoni, E.; Floreani, F.; Barago, N.; Papassissa, E.; Larese Filon, F.; Covelli, S. Concentration of mercury in human hair and associated factors in residents of the Gulf of Trieste (North-Eastern Italy). Environ. Sci. Pollut. Res. 2022, 30, 21425–21437. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, J.J.; Ralston, N.V.C. Selenium and mercury in pelagic fish in the central north Pacific near Hawaii. Biol. Trace Elem. Res. 2007, 119, 242–524. [Google Scholar] [CrossRef] [PubMed]
- Ralston, N.V.C. Selenium health benefit values as seafood safety criteria. EcoHealth 2008, 5, 442–455. [Google Scholar] [CrossRef]
- Ralston, N.V.C.; Raymond, L.J. EPA Progress: Fish Selenium-Health Benefit Values in Mercury Risk Management. Available online: http://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/9503/report/2013 (accessed on 30 January 2023).
- Ralston, N.V.C.; Ralston, C.R.; Raymond, L.J. Selenium health benefit values: Updated criteria for mercury risk assessments. Biol. Trace Elem. Res. 2016, 171, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Barone, G.; Storelli, A.; Meleleo, D.; Dambrosio, A.; Garofalo, R.; Busco, A.; Storelli, M.M. Levels of mercury, methylmercury and selenium in fish: Insight into children food safety. Toxics 2021, 9, 39. [Google Scholar] [CrossRef]
- Žvab Rožič, P.; Dolenec, T.; Baždarić, B.; Karamarko, V.; Kniewald, G.; Dolenec, M. Element levels in cultured and wild sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) from the Adriatic Sea and potential risk assessment. Environ. Geochem. Health 2014, 36, 19–39. [Google Scholar] [CrossRef]
- Sulimanec Grgec, A.; Kljanović-Gašpić, Z.; Orct, T.; Tičina, V.; Sekovanić, A.; Jurasović, J.; Piasek, M. Mercury and selenium in fish from the eastern part of the Adriatic Sea: A risk-benefit assessment in vulnerable population groups. Chemosphere 2020, 261, 127742. [Google Scholar] [CrossRef]
- Castriotta, L.; Rosolen, V.; Biggeri, A.; Ronfani, L.; Catelan, D.; Mariuz, M.; Bin, M.; Vecchi Brumatti, L.; Horvat, M.; Barbone, F. The role of mercury, selenium and the Se-Hg antagonism on cognitive neurodevelopment: A 40-month follow-up of the Italian mother-child PHIME cohort. Int. J. Hygiene Environ. Health 2020, 230, 113604. [Google Scholar] [CrossRef]
- Costa, F.; Mieiro, C.L.; Pereira, M.E.; Coelho, J.P. Mercury bioaccessibility in fish and seafood: Effect of method, cooking and trophic level on consumption risk assessment. Mar. Pollut. Bull. 2022, 179, 113736. [Google Scholar] [CrossRef]
Water Body | Total Hg (mg kg−1) | F1 (%) | F2 (%) | F3 (%) | F4 (%) | F5 (%) | Igeo | Sediment Quality | Class |
---|---|---|---|---|---|---|---|---|---|
FM1 | 7.38 | 0.39 | 0.04 | 6.85 | 21.65 | 71.08 | 14.8 | EC | 6 |
FM2 | 5.67 | 0.26 | 0.02 | 4.71 | 40.23 | 54.78 | 12.8 | EC | 6 |
FM3 | 6.20 | n.d. | n.d. | n.d. | n.d. | n.d. | 13.5 | EC | 6 |
FM4 | 5.09 | 0.18 | 0.03 | 7.28 | 55.21 | 37.30 | 12.0 | EC | 6 |
TEU1 | 3.96 | 0.17 | 0.02 | 20.52 | 15.30 | 63.99 | 10.2 | EC | 6 |
TEU2 | 4.42 | 0.22 | 0.08 | 22.28 | 23.57 | 53.86 | 11.0 | EC | 6 |
TEU3 | 5.55 | 0.14 | 0.03 | 8.75 | 30.28 | 60.80 | 12.7 | EC | 6 |
TEU4 | 6.66 | 0.12 | 0.01 | 14.76 | 15.03 | 70.07 | 14.0 | EC | 6 |
TME1 | 2.77 | 0.30 | 0.05 | 20.21 | 18.07 | 61.36 | 7.5 | EC | 6 |
TME2 | 1.73 | 0.36 | 0.04 | 10.61 | 33.69 | 55.30 | 4.1 | H to EC | 5 |
TME3 | 1.91 | 0.21 | 0.04 | 10.87 | 29.81 | 59.06 | 4.8 | H to EC | 5 |
TME4 | 1.52 | 0.35 | 0.04 | 3.10 | 24.09 | 72.41 | 3.1 | HC | 6 |
TPO1 | 5.21 | 0.15 | 0.05 | 4.72 | 67.24 | 27.46 | 12.2 | EC | 6 |
TPO2 | 3.75 | 0.15 | 0.02 | 25.02 | 18.60 | 56.22 | 9.8 | EC | 6 |
TPO3 | 2.18 | 0.45 | 0.13 | 7.30 | 46.76 | 45.35 | 5.8 | EC | 6 |
TPO4 | 1.66 | 0.53 | 0.04 | 6.31 | 23.94 | 69.18 | 3.7 | HC | 4 |
TPO5 | 1.30 | 0.52 | 0.07 | 8.64 | 35.64 | 55.13 | 1.9 | MC | 2 |
Site | Total Hg (mg kg−1) | Reference |
---|---|---|
Piallassa Baiona (Italy) | n.a.–160 | [79] |
Piallassa Baiona (Italy) | 0.13–250 | [81] |
Piallassa Baiona (Italy) | 11–43 | [82] |
Piallassa Baiona (Italy) | 0.88–38 | [80] |
Piallassa Baiona (Italy) | 0.37–5.51 | [83] |
Piallassa Baiona (Italy) | 0.72 ± 0.3–22.79 ± 6.7 | [85] |
Piallassa Baiona (Italy) | 14.4–79.0 | [72] |
Santa Gilla (Sardinia, Italy) | 0.206–8.63 | [80] |
Varano Lagoon (Italy) | 0.04–0.04 | [87] |
Lesina (Italy) | 0.04–0.12 | [88] |
Stagnone Marsala (Italy) | 0.18 ± 0.01–0.67 ± 0.06 | [89] |
Orbetello Lagoon (Italy) | 0.30–2.64 | [88] |
Orbetello Lagoon (Italy) | 0.57–37.63 | [84] |
Orbetello Lagoon (Italy) | 0.56–28.18 | [86] |
Venice Lagoon (Italy) | 0.05–3.8 | [73] |
Venice Lagoon (Italy) | 0.1–1.9 | [74] |
Venice Lagoon (Italy) | 0.64–3.41 | [75] |
Venice Lagoon (Italy) | 0.1–3.4 | [76] |
Venice Lagoon (Italy) | 0.03–3.9 | [77] |
Berre Lagoon (France) | 0.15–0.40 | [90] |
Berre Lagoon (France) | 0.068 ± 0.002–0.725 ± 0.019 | [91] |
Bizerte Lagoon (Tunisia) | 0.008–0.64 | [92] |
Bizerte Lagoon (Tunisia) | 0.007 ± 0.002–0.102 ± 0.004 | [93] |
Marano and Grado Lagoon (Italy) | 1.62–10.06 | [69] |
Marano and Grado Lagoon (Italy) | 4.1–6.6 | [30] |
Marano and Grado Lagoon (Italy) | 9.5 ± 0.2–14.4 ± 0.7 | [36] |
Marano and Grado Lagoon (Italy) | 10.7–12.5 | [70] |
Marano and Grado Lagoon (Italy) | 0.68–9.95 | [26] |
Marano and Grado Lagoon (Italy) | 2.15–6.87 | [71] |
Marano and Grado Lagoon (Italy) | 3.79–7.25 | [39] |
Marano and Grado Lagoon (Italy) | 1.3–7.38 | This work |
Fractions | Hg Classification | Primary Compounds Extracted |
---|---|---|
F1 | Water-soluble, i.e., salts | HgCl2 |
F2 | Weak acid-soluble/”stomach acid” soluble | HgSO4, HgO |
F3 | Organo-complexed | Hg-humics, Hg2Cl2, MeHg |
F4 | Strongly-complexed | mineral lattice bound, Hg2Cl2, Hg0 |
F5 | Mineral-bound | HgS, m-HgS, HgSe, HgAu |
Site | Hg (mg kg−1) | F1 (%) | F2 (%) | F3 (%) | F4 (%) | F5 (%) | References |
---|---|---|---|---|---|---|---|
Aussa River | 0.82–5.69 | 0.66–5.60 | 0.96–6.05 | 5.59–24.81 | 33.11–90.57 | 0–57.95 | [31] |
Grado Lagoon | 10.75–13.37 | 0.16–0.20 | 0.01–0.02 | 2.72–4.28 | 43.58–53.31 | 42.24–53.49 | [70] |
Pialassa Baiona | 14.40–19.10 | 0.20–0.38 | 0–0.02 | 4.77–6.32 | 87.00–87.81 | 5.67–7.83 | [70] |
Gulf of Trieste | 6.36–13.50 | 0.08–0.18 | 0.04–0.18 | 0.71–1.47 | 32.6–59.7 | 39.3–56.7 | [95] |
Taranto harbour | 6.61 | 0.30 | 0.00 | 4.20 | 93.10 | 2.30 | [96] |
Isonzo River mouth | 13.27 | 0.08 | 0.03 | 0.77 | 23.45 | 75.68 | [97] |
Marano Grado Lagoon | 1.30–7.38 | 0.15–0.53 | 0.01–0.13 | 3.1–25.0 | 15.3–67.6 | 27.5–72.4 | This study |
EUFG | Species | Year | Ltot (cm) | THg (mg kg−1) | Ltot (cm) | THg (mg kg−1) | Ltot (cm) | THg (mg kg−1) |
---|---|---|---|---|---|---|---|---|
Estuarine | Atherina boyeri | 2012 | 7.8–8.6 | 0.17–0.28 | 7.6–8.1 | 0.23–0.78 | 8.4 | 0.72 |
Salaria pavo | 2010/2011 | 8.2 | 1.74 | 8.3 | 1.6 | nd | nd | |
Zosterisessor ophiocephalus | 2010/2011 | 7.4–12.6 | 0.16–0.49 | nd | nd | 10.2 | 0.61 | |
Aphanius fasciatus | 2010/2011 | 4.1 | 0.21 | nd | nd | 4.4–4.8 | 0.4–0.74 | |
Pomatoschistus canestrinii | 2010/2011 | 4.4 | 0.04 | nd | nd | nd | nd | |
Diadromous | Alosa fallax | 2010/2011 | 28.5 | 0.76 | nd | nd | nd | nd |
Marine Migrant | Engraulis encrasicolus | 2010/2011 | 9 | 0.07–0.17 | nd | nd | nd | nd |
Chelon auratus | 2021 | 24.6–30.9 | 0.1–0.18 | 24.3–29.5 | 0.23–0.5 | 21 | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bettoso, N.; Pittaluga, F.; Predonzani, S.; Zanello, A.; Acquavita, A. Mercury Levels in Sediment, Water and Selected Organisms Collected in a Coastal Contaminated Environment: The Marano and Grado Lagoon (Northern Adriatic Sea, Italy). Appl. Sci. 2023, 13, 3064. https://doi.org/10.3390/app13053064
Bettoso N, Pittaluga F, Predonzani S, Zanello A, Acquavita A. Mercury Levels in Sediment, Water and Selected Organisms Collected in a Coastal Contaminated Environment: The Marano and Grado Lagoon (Northern Adriatic Sea, Italy). Applied Sciences. 2023; 13(5):3064. https://doi.org/10.3390/app13053064
Chicago/Turabian StyleBettoso, Nicola, Federico Pittaluga, Sergio Predonzani, Antonella Zanello, and Alessandro Acquavita. 2023. "Mercury Levels in Sediment, Water and Selected Organisms Collected in a Coastal Contaminated Environment: The Marano and Grado Lagoon (Northern Adriatic Sea, Italy)" Applied Sciences 13, no. 5: 3064. https://doi.org/10.3390/app13053064
APA StyleBettoso, N., Pittaluga, F., Predonzani, S., Zanello, A., & Acquavita, A. (2023). Mercury Levels in Sediment, Water and Selected Organisms Collected in a Coastal Contaminated Environment: The Marano and Grado Lagoon (Northern Adriatic Sea, Italy). Applied Sciences, 13(5), 3064. https://doi.org/10.3390/app13053064