Adaptive Gaussian Mixture Model for Uncertainty Propagation Using Virtual Sample Generation
Abstract
:1. Introduction
2. Problem Statement and Methodology
2.1. Problem Statement
2.2. Single Gaussian Model-Based Uncertainty Propagation
2.3. Gaussian Mixture Model Approach
3. Methodology of Adaptive Gaussian Mixture Model Using Virtual Sample Generation
3.1. Overall Procedure of AGMM-VSG
3.2. Gaussian Component Nonlinearity Detecting
3.3. Gaussian Component Splitting
3.4. Virtual Sample Generation-Based Propagation Strategy
4. Numerical Simulations
4.1. High-Earth Orbit Case
4.2. Low-Earth Orbit Case
4.3. TianQin Orbit Uncertainty Propagation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, C.; Peng, C.; Gao, Y. Reachable domain for spacecraft with ellipsoidal Delta-V distribution. Astrodynamics 2018, 2, 265–288. [Google Scholar] [CrossRef]
- Qiao, D.; Zhou, X.; Li, X. Analytical configuration uncertainty propagation of geocentric interferometric detection constellation. Astrodynamics 2023. [Google Scholar] [CrossRef]
- Oguri, K.; McMahon, J.W. Stochastic primer vector for robust low-thrust trajectory design under uncertainty. J. Guid. Control Dyn. 2022, 45, 84–102. [Google Scholar] [CrossRef]
- Shu, P.; Yang, Z.; Luo, Y.Z. Higher-Order Lambert Problem Solution Based on Differential Algebra. J. Guid. Control Dyn. 2022, 45, 1913–1926. [Google Scholar] [CrossRef]
- Folkner, W.; Hechler, F.; Sweetser, T.; Vincent, M.; Bender, P. LISA orbit selection and stability. Class. Quantum Gravity 1997, 14, 1405. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.; Ye, B.; Zhang, X. Impact of orbital orientations and radii on TianQin constellation stability. Int. J. Mod. Phys. D 2020, 29, 2050056. [Google Scholar] [CrossRef]
- Zhou, X.; Qin, T.; Meng, L. Maneuvering Spacecraft Orbit Determination Using Polynomial Representation. Aerospace 2022, 9, 257. [Google Scholar] [CrossRef]
- Ye, B.B.; Zhang, X.; Zhou, M.Y.; Wang, Y.; Yuan, H.M.; Gu, D.; Ding, Y.; Zhang, J.; Mei, J.; Luo, J. Optimizing orbits for TianQin. Int. J. Mod. Phys. D 2019, 28, 1950121. [Google Scholar] [CrossRef]
- Luo, Y.Z.; Yang, Z. A review of uncertainty propagation in orbital mechanics. Prog. Aerosp. Sci. 2017, 89, 23–39. [Google Scholar] [CrossRef]
- Terejanu, G.; Singla, P.; Singh, T.; Scott, P.D. Uncertainty propagation for nonlinear dynamic systems using Gaussian mixture models. J. Guid. Control Dyn. 2008, 31, 1623–1633. [Google Scholar] [CrossRef]
- Han, H.; Qiao, D.; Chen, H.; Li, X. Rapid planning for aerocapture trajectory via convex optimization. Aerosp. Sci. Technol. 2019, 84, 763–775. [Google Scholar] [CrossRef]
- Fuller, A. Analysis of nonlinear stochastic systems by means of the Fokker–Planck equation. Int. J. Control. 1969, 9, 603–655. [Google Scholar] [CrossRef]
- Chen, N.; Majda, A.J.; Tong, X.T. Rigorous Analysis for Efficient Statistically Accurate Algorithms for Solving Fokker–Planck Equations in Large Dimensions. SIAM/ASA J. Uncertain. Quantif. 2018, 6, 1198–1223. [Google Scholar] [CrossRef] [Green Version]
- Junkins, J.L.; Akella, M.R.; Alfrined, K.T. Non-Gaussian error propagation in orbital mechanics. Guid. Control. 1996, 1996, 283–298. [Google Scholar]
- Ghoreishi, S.; Allaire, D. Adaptive uncertainty propagation for coupled multidisciplinary systems. AIAA J. 2017, 55, 3940–3950. [Google Scholar] [CrossRef]
- Jia, B.; Xin, M. Active Sampling Based Polynomial-Chaos–Kriging Model for Orbital Uncertainty Propagation. J. Guid. Control Dyn. 2021, 44, 905–922. [Google Scholar] [CrossRef]
- Park, R.S.; Scheeres, D.J. Nonlinear mapping of Gaussian statistics: Theory and applications to spacecraft trajectory design. J. Guid. Control Dyn. 2006, 29, 1367–1375. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Qiao, D.; Wen, C. Reachable domain of spacecraft after a gravity-assist flyby. J. Guid. Control Dyn. 2019, 42, 931–940. [Google Scholar] [CrossRef]
- Chen, Q.; Qiao, D.; Wen, C. Orbital Element Reachable Set After Gravity Assists of Planets in Elliptical Orbits. J. Guid. Control Dyn. 2020, 43, 989–997. [Google Scholar] [CrossRef]
- Yang, Z.; Luo, Y.Z.; Zhang, J. Nonlinear semi-analytical uncertainty propagation of trajectory under impulsive maneuvers. Astrodynamics 2019, 3, 61–77. [Google Scholar] [CrossRef]
- Shu, P.; Yang, Z.; Luo, Y.Z.; Sun, Z.J. Collision Probability of Debris Clouds Based on Higher-Order Boundary Value Problems. J. Guid. Control Dyn. 2022, 45, 1512–1522. [Google Scholar] [CrossRef]
- Park, R.S.; Scheeres, D.J. Nonlinear semi-analytic methods for trajectory estimation. J. Guid. Control Dyn. 2007, 30, 1668–1676. [Google Scholar] [CrossRef] [Green Version]
- Majji, M.; Junkins, J.L.; Turner, J.D. A high order method for estimation of dynamic systems. J. Astronaut. Sci. 2008, 56, 401–440. [Google Scholar] [CrossRef]
- Zhou, X.; Qin, T.; Ji, M.; Qiao, D. A LSTM assisted orbit determination algorithm for spacecraft executing continuous maneuver. Acta Astronaut. 2022. [Google Scholar] [CrossRef]
- Boone, S.; McMahon, J. Orbital guidance using higher-order state transition tensors. J. Guid. Control Dyn. 2021, 44, 493–504. [Google Scholar] [CrossRef]
- Qiao, D.; Zhou, X.; Zhao, Z.; Qin, T. Asteroid Approaching Orbit Optimization Considering Optical Navigation Observability. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 5165–5179. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Liang, Y.; Yang, F. A new sigma-point filter–uniform random sampling Kalman filter. IFAC-PapersOnLine 2017, 50, 3853–3858. [Google Scholar] [CrossRef]
- Li, X.; Qiao, D.; Li, P. Bounded trajectory design and self-adaptive maintenance control near non-synchronized binary systems comprised of small irregular bodies. Acta Astronaut. 2018, 152, 768–781. [Google Scholar] [CrossRef]
- Han, H.; Qiao, D.; Chen, H. Optimization of aeroassisted rendezvous and interception trajectories between non-coplanar elliptical orbits. Acta Astronaut. 2019, 163, 190–200. [Google Scholar] [CrossRef]
- Jia, B.; Xin, M. Short-arc orbital uncertainty propagation with arbitrary polynomial chaos and admissible region. J. Guid. Control Dyn. 2020, 43, 715–728. [Google Scholar] [CrossRef]
- Julier, S.J.; Uhlmann, J.K.; Durrant-Whyte, H.F. A new approach for filtering nonlinear systems. In Proceedings of the American Control Conference-ACC’95, Seattle, WA, USA, 21–23 June 1995; Volume 3, pp. 1628–1632. [Google Scholar]
- Van Der Merwe, R. Sigma-point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models; Oregon Health & Science University: Portland, OR, USA, 2004. [Google Scholar]
- Meng, D.; Miao, L.; Shao, H.; Shen, J. A seventh-degree cubature Kalman filter. Asian J. Control. 2018, 20, 250–262. [Google Scholar] [CrossRef]
- Cui, X.; Jing, Z.; Luo, M.; Guo, Y.; Qiao, H. A new method for state of charge estimation of lithium-ion batteries using square root cubature Kalman filter. Energies 2018, 11, 209. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yan, Z.; Chen, Y. High-degree cubature Kalman filter for nonlinear state estimation with missing measurements. Asian J. Control. 2022, 24, 1261–1272. [Google Scholar] [CrossRef]
- Chen, P.; Zabaras, N.; Bilionis, I. Uncertainty propagation using infinite mixture of gaussian processes and variational bayesian inference. J. Comput. Phys. 2015, 284, 291–333. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Warier, R.R.; Sanyal, A.K.; Qiao, D. Trajectory tracking near small bodies using only attitude control. J. Guid. Control Dyn. 2019, 42, 109–122. [Google Scholar] [CrossRef]
- Jones, B.A.; Weisman, R. Multi-fidelity orbit uncertainty propagation. Acta Astronaut. 2019, 155, 406–417. [Google Scholar] [CrossRef]
- Sun, P.; Colombo, C.; Trisolini, M.; Li, S. Hybrid Gaussian Mixture Splitting Techniques for Uncertainty Propagation in Nonlinear Dynamics. J. Guid. Control Dyn. 2022, 1–11. [Google Scholar] [CrossRef]
- Vittaldev, V.; Russell, R.P.; Linares, R. Spacecraft uncertainty propagation using gaussian mixture models and polynomial chaos expansions. J. Guid. Control Dyn. 2016, 39, 2615–2626. [Google Scholar] [CrossRef] [Green Version]
- Vittaldev, V.; Russell, R.P. Space object collision probability using multidirectional gaussian mixture models. J. Guid. Control Dyn. 2016, 39, 2163–2169. [Google Scholar] [CrossRef]
- DeMars, K.J.; Bishop, R.H.; Jah, M.K. Entropy-based approach for uncertainty propagation of nonlinear dynamical systems. J. Guid. Control Dyn. 2013, 36, 1047–1057. [Google Scholar] [CrossRef]
- Zhou, X.; Cheng, Y.; Qiao, D.; Huo, Z. An adaptive surrogate model-based fast planning for swarm safe migration along halo orbit. Acta Astronaut. 2022, 194, 309–322. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, S.; Qin, T. Multi-Spacecraft Tracking and Data Association Based on Uncertainty Propagation. Appl. Sci. 2022, 12, 7660. [Google Scholar] [CrossRef]
- Tang, Y.; Long, T.; Shi, R.; Wu, Y.; Gary Wang, G. Sequential radial basis function-based optimization method using virtual sample generation. J. Mech. Des. 2020, 142, 111701. [Google Scholar] [CrossRef]
- Shi, R.; Long, T.; Baoyin, H. Multi-fidelity and multi-objective optimization of low-thrust transfers with control strategy for all-electric geostationary satellites. Acta Astronaut. 2020, 177, 577–587. [Google Scholar] [CrossRef]
- Zhao-Ming, L.; Wen-Ge, Y.; Dan, D.; Yu-Rong, L. A novel algorithm of fifth-degree cubature Kalman filter for orbit determination at the lower bound approaching to the number of cubature points. Acta Phys. Sin. 2017, 66. [Google Scholar] [CrossRef]
- Vishwajeet, K.; Singla, P. Adaptive split/merge-based Gaussian mixture model approach for uncertainty propagation. J. Guid. Control Dyn. 2018, 41, 603–617. [Google Scholar] [CrossRef]
- Omran, A.; Newman, B. Nonlinearity Index Theory for Flight Mechanics Applications. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Toronto, ON, Canada, 2–5 August 2010; p. 7624. [Google Scholar]
- Manchester, Z.; Kuindersma, S. Derivative-free trajectory optimization with unscented dynamic programming. In Proceedings of the IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 3642–3647. [Google Scholar]
- Bouhlel, M.A.; Martins, J.R. Gradient-enhanced kriging for high-dimensional problems. Eng. Comput. 2019, 35, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Gao, A.; Liao, W. Efficient gravity field modeling method for small bodies based on Gaussian process regression. Acta Astronaut. 2019, 157, 73–91. [Google Scholar] [CrossRef]
- Sun, F.; Su, W.Y.; Wang, M.Y.; Wang, R.J. RBF-POD reduced-order modeling of flow field in the curved shock compression inlet. Acta Astronaut. 2021, 185, 25–36. [Google Scholar] [CrossRef]
- Jia, F.; Li, X.; Qiao, D.; Zhou, X. Semi-analytical configuration optimization of geocentric gravitational wave observatory. Acta Astronaut. 2023, 202, 522–534. [Google Scholar] [CrossRef]
Item | Symbol | Description | Other Statement |
---|---|---|---|
Input of the black-box model | Pure coordinate | ||
Output of the black-box model | - | ||
Combination of a point and its response | - |
Component i | |||
---|---|---|---|
1 | 0.0763216491 | −1.6899729111 | 0.4422555386 |
2 | 0.2474417860 | −0.8009283834 | 0.4422555386 |
3 | 0.3524731300 | 0 | 0.4422555386 |
4 | 0.2474417860 | 0.8009283834 | 0.4422555386 |
5 | 0.0763216491 | 1.6899729111 | 0.4422555386 |
a/km | e | i/deg | /deg | /deg | n/deg |
---|---|---|---|---|---|
6596 | 0 | 0 | 0 | 0 | 0 |
a/km | e | i/deg | /deg | /deg | n/deg |
---|---|---|---|---|---|
35,000 | 0.2 | 0 | 0 | 0 | 0 |
a/km | e | i/deg | /deg | /deg | n/deg |
---|---|---|---|---|---|
99,995.572323 | 0.000430 | 94.697997 | 210.445892 | 358.624463 | 61.329603 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Zhang, Z.; Han, H. Adaptive Gaussian Mixture Model for Uncertainty Propagation Using Virtual Sample Generation. Appl. Sci. 2023, 13, 3069. https://doi.org/10.3390/app13053069
Xu T, Zhang Z, Han H. Adaptive Gaussian Mixture Model for Uncertainty Propagation Using Virtual Sample Generation. Applied Sciences. 2023; 13(5):3069. https://doi.org/10.3390/app13053069
Chicago/Turabian StyleXu, Tianlai, Zhe Zhang, and Hongwei Han. 2023. "Adaptive Gaussian Mixture Model for Uncertainty Propagation Using Virtual Sample Generation" Applied Sciences 13, no. 5: 3069. https://doi.org/10.3390/app13053069
APA StyleXu, T., Zhang, Z., & Han, H. (2023). Adaptive Gaussian Mixture Model for Uncertainty Propagation Using Virtual Sample Generation. Applied Sciences, 13(5), 3069. https://doi.org/10.3390/app13053069