Classification and Segmentation of Diabetic Retinopathy: A Systemic Review
Abstract
:1. Introduction
- MAs are the initial indication of DR, which appear as microscopic red circular marks on retina caused by the breakdown in the walls of vessel. Sharped margins with a size of less than 125 μm define the dots on retinal fundus images [11].
- Hemorrhages (HMs) show large patches on the retina with irregular edges that are greater than 125 μm. It appears when the leakage of blood from blocked retinal vessels impairs vision in the eyes. HMs are further classified into two categories, flame (superficial HMs) and blot (deeper HMs) [12].
- Hard exudate (HE) appears as waxy yellow patches on the retina due to plasma leakage. HE is caused by the production of lipoproteins, which flow from MAs and accumulate in the retina.
- Soft exudate (SE) appears as white fluffy patches on the retina with distracted edges caused by the swelling of nerve fibers [13].
2. Methods for Identification of DR
3. Preprocessing
4. Segmentation
5. Hand-Crafted Feature Extraction
6. Automated Classification of DR Lesions by Using Deep Features
7. Benchmark Datasets
8. Performance Evaluation
9. Challenges and Discussion
10. Future Directions
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elsharkawy, M.; Sharafeldeen, A.; Soliman, A.; Khalifa, F.; Ghazal, M.; El-Daydamony, E.; Atwan, A.; Sandhu, H.S.; El-Baz, A. A novel computer-aided diagnostic system for early detection of diabetic retinopathy using 3D-OCT higher-order spatial appearance model. Diagnostics 2022, 12, 461. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Yasmin, M. A review on recent developments for detection of diabetic retinopathy. Scientifica 2016, 2016, 6838976. [Google Scholar] [CrossRef] [Green Version]
- Kharroubi, A.T.; Darwish, H.M. Diabetes mellitus: The epidemic of the century. World J. Diabetes 2015, 6, 850. [Google Scholar] [CrossRef]
- Dai, L.; Wu, L.; Li, H.; Cai, C.; Wu, Q.; Kong, H.; Liu, R.; Wang, X.; Hou, X.; Liu, Y.; et al. A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat. Commun. 2021, 12, 3242. [Google Scholar] [CrossRef]
- Oh, K.; Kang, H.M.; Leem, D.; Lee, H.; Seo, K.Y.; Yoon, S. Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images. Sci. Rep. 2021, 11, 1897. [Google Scholar] [CrossRef]
- Goel, S.; Gupta, S.; Panwar, A.; Kumar, S.; Verma, M.; Bourouis, S.; Ullah, M.A. Deep learning approach for stages of severity classification in diabetic retinopathy using color fundus retinal images. Math. Probl. Eng. 2021, 2021, 7627566. [Google Scholar] [CrossRef]
- Leontidis, G.; Al-Diri, B.; Hunter, A. Diabetic retinopathy: Current and future methods for early screening from a retinal hemodynamic and geometric approach. Expert Rev. Ophthalmol. 2014, 9, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Kayal, D.; Banerjee, S. A new dynamic thresholding based technique for detection of hard exudates in digital retinal fundus image. In Proceedings of the 2014 International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 20–21 February 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 141–144. [Google Scholar]
- Mamtora, S.; Wong, Y.; Bell, D.; Sandinha, T. Bilateral birdshot retinochoroiditis and retinal astrocytoma. Case Rep. Ophthalmol. Med. 2017, 2017, 6586157. [Google Scholar] [CrossRef]
- Porwal, P.; Pachade, S.; Kamble, R.; Kokare, M.; Deshmukh, G.; Sahasrabuddhe, V.; Meriaudeau, F. Indian diabetic retinopathy image dataset (IDRiD): A database for diabetic retinopathy screening research. Data 2018, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Qomariah, D.; Nopember, I.T.S.; Tjandrasa, H.; Fatichah, C. Segmentation of microaneurysms for early detection of diabetic retinopathy using MResUNet. Int. J. Intell. Eng. Syst. 2021, 14, 359–373. [Google Scholar] [CrossRef]
- Mumtaz, R.; Hussain, M.; Sarwar, S.; Khan, K.; Mumtaz, S.; Mumtaz, M. Automatic detection of retinal hemorrhages by exploiting image processing techniques for screening retinal diseases in diabetic patients. Int. J. Diabetes Dev. Ctries. 2017, 38, 80–87. [Google Scholar] [CrossRef]
- Qiao, L.; Zhu, Y.; Zhou, H. Diabetic retinopathy detection using prognosis of microaneurysm and early diagnosis system for non-proliferative diabetic retinopathy based on deep learning algorithms. IEEE Access 2020, 8, 104292–104302. [Google Scholar] [CrossRef]
- Mishra, A.; Singh, L.; Pandey, M.; Lakra, S. Image based early detection of diabetic retinopathy: A systematic review on Artificial Intelligence (AI) based recent trends and approaches. J. Intell. Fuzzy Syst. 2022, 43, 6709–6741. [Google Scholar] [CrossRef]
- Wong, T.Y.; Sun, J.; Kawasaki, R.; Ruamviboonsuk, P.; Gupta, N.; Lansingh, V.C.; Maia, M.; Mathenge, W.; Moreker, S.; Muqit, M.M.; et al. Guidelines on diabetic eye care: The international council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology 2018, 125, 1608–1622. [Google Scholar] [CrossRef] [Green Version]
- Atwany, M.Z.; Sahyoun, A.H.; Yaqub, M. Deep learning techniques for diabetic retinopathy classification: A survey. IEEE Access 2022, 10, 28642–28655. [Google Scholar] [CrossRef]
- Elsharkawy, M.; Elrazzaz, M.; Sharafeldeen, A.; Alhalabi, M.; Khalifa, F.; Soliman, A.; Elnakib, A.; Mahmoud, A.; Ghazal, M.; El-Daydamony, E.; et al. The role of different retinal imaging modalities in predicting progression of diabetic retinopathy: A survey. Sensors 2022, 22, 3490. [Google Scholar] [CrossRef]
- Nage, P.; Shitole, S. A survey on automatic diabetic retinopathy screening. SN Comput. Sci. 2021, 2, 439. [Google Scholar] [CrossRef]
- Bilal, A.; Sun, G.; Mazhar, S. Survey on recent developments in automatic detection of diabetic retinopathy. J. Français D’ophtalmologie 2021, 44, 420–440. [Google Scholar] [CrossRef]
- Stolte, S.; Fang, R. A survey on medical image analysis in diabetic retinopathy. Med. Image Anal. 2020, 64, 101742. [Google Scholar] [CrossRef]
- Amin, J.; Anjum, M.A.; Malik, M. Fused information of DeepLabv3+ and transfer learning model for semantic segmentation and rich features selection using equilibrium optimizer (EO) for classification of NPDR lesions. Knowl.-Based Syst. 2022, 249, 108881. [Google Scholar] [CrossRef]
- Nneji, G.U.; Cai, J.; Deng, J.; Monday, H.N.; Hossin, A.; Nahar, S. Identification of diabetic retinopathy using weighted fusion deep learning based on dual-channel fundus scans. Diagnostics 2022, 12, 540. [Google Scholar] [CrossRef] [PubMed]
- Oulhadj, M.; Riffi, J.; Chaimae, K.; Mahraz, A.M.; Ahmed, B.; Yahyaouy, A.; Fouad, C.; Meriem, A.; Idriss, B.A.; Tairi, H. Diabetic retinopathy prediction based on deep learning and deformable registration. Multimed. Tools Appl. 2022, 81, 28709–28727. [Google Scholar] [CrossRef]
- Jabbar, M.K.; Yan, J.; Xu, H.; Rehman, Z.U.; Jabbar, A. Transfer learning-based model for diabetic retinopathy diagnosis using retinal images. Brain Sci. 2022, 12, 535. [Google Scholar] [CrossRef] [PubMed]
- Amin, J.; Sharif, M.; Mallah, G.A.; Fernandes, S.L. An optimized features selection approach based on manta ray foraging optimization (MRFO) method for parasite malaria classification. Front. Public Health 2022, 10, 2846. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Anjum, M.A.; Siddiqa, A.; Kadry, S.; Nam, Y.; Raza, M. 3D semantic deep learning networks for leukemia detection. Comput. Mater. Contin. 2021, 69, 785–799. [Google Scholar] [CrossRef]
- Malik, S.; Amin, J.; Sharif, M.; Yasmin, M.; Kadry, S.; Anjum, S. Fractured elbow classification using hand-crafted and deep feature fusion and selection based on whale optimization approach. Mathematics 2022, 10, 3291. [Google Scholar] [CrossRef]
- Shaukat, N.; Amin, J.; Sharif, M.; Azam, F.; Kadry, S.; Krishnamoorthy, S. Three-dimensional semantic segmentation of diabetic retinopathy lesions and grading using transfer learning. J. Pers. Med. 2022, 12, 1454. [Google Scholar] [CrossRef]
- Saleem, S.; Amin, J.; Sharif, M.; Mallah, G.A.; Kadry, S.; Gandomi, A.H. Leukemia segmentation and classification: A comprehensive survey. Comput. Biol. Med. 2022, 150, 106028. [Google Scholar] [CrossRef]
- Amin, J. Segmentation and classification of diabetic retinopathy. Univ. Wah J. Comput. Sci. 2019, 2. Available online: http://uwjcs.org.pk/index.php/ojs/article/view/14 (accessed on 10 January 2023).
- ul haq, I.; Amin, J.; Sharif, M.; Almas Anjum, M. Skin lesion detection using recent machine learning approaches. In Prognostic Models in Healthcare: AI and Statistical Approaches; Springer: Singapore, 2022; pp. 193–211. [Google Scholar]
- Amin, J.; Anjum, M.A.; Sharif, M.; Jabeen, S.; Kadry, S.; Ger, P.M. A new model for brain tumor detection using ensemble transfer learning and quantum variational classifier. Comput. Intell. Neurosci. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Yunus, U.; Amin, J.; Sharif, M.; Yasmin, M.; Kadry, S.; Krishnamoorthy, S. Recognition of knee osteoarthritis (KOA) using YOLOv2 and classification based on convolutional neural network. Life 2022, 12, 1126. [Google Scholar] [CrossRef] [PubMed]
- Amin, J.; Anjum, M.A.; Sharif, A.; Sharif, M.I. A modified classical-quantum model for diabetic foot ulcer classification. Intell. Decis. Technol. 2022, 16, 23–28. [Google Scholar] [CrossRef]
- Sadaf, D.; Amin, J.; Sharif, M.; Yasmin, M. Detection of diabetic foot ulcer using machine/deep learning. In Advances in Deep Learning for Medical Image Analysis; CRC Press: Boca Raton, FL, USA, 2000; pp. 101–123. [Google Scholar]
- Amin, J.; Anjum, M.A.; Gul, N.; Sharif, M. A secure two-qubit quantum model for segmentation and classification of brain tumor using MRI images based on blockchain. Neural Comput. Appl. 2022, 34, 17315–17328. [Google Scholar] [CrossRef]
- Toğaçar, M. Detection of retinopathy disease using morphological gradient and segmentation approaches in fundus images. Comput. Methods Programs Biomed. 2022, 214, 106579. [Google Scholar] [CrossRef] [PubMed]
- Vinayaki, V.D.; Kalaiselvi, R. Multithreshold image segmentation technique using remora optimization algorithm for diabetic retinopathy detection from fundus images. Neural Process. Lett. 2022, 54, 2363–2384. [Google Scholar] [CrossRef] [PubMed]
- Dayana, A.M.; Emmanuel, W.R.S. An enhanced swarm optimization-based deep neural network for diabetic retinopathy classification in fundus images. Multimed. Tools Appl. 2022, 81, 20611–20642. [Google Scholar] [CrossRef]
- Vasireddi, H.K.; GNV, R.R. Deep feed forward neural network–based screening system for diabetic retinopathy severity classification using the lion optimization algorithm. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 1245–1263. [Google Scholar] [CrossRef]
- Li, F.; Wang, Y.; Xu, T.; Dong, L.; Yan, L.; Jiang, M.; Zhang, X.; Jiang, H.; Wu, Z.; Zou, H. Deep learning-based automated detection for diabetic retinopathy and diabetic macular oedema in retinal fundus photographs. Eye 2022, 36, 1433–1441. [Google Scholar] [CrossRef]
- Gangwar, A.K.; Ravi, V. Diabetic retinopathy detection using transfer learning and deep learning. In Evolution in Computational Intelligence; Springer: Singapore, 2021; pp. 679–689. [Google Scholar]
- Sarki, R.; Ahmed, K.; Wang, H.; Zhang, Y.; Ma, J.; Wang, K. Image preprocessing in classification and identification of diabetic eye diseases. Data Sci. Eng. 2021, 6, 455–471. [Google Scholar] [CrossRef]
- Sharma, A.; Shinde, S.; Shaikh, I.I.; Vyas, M.; Rani, S. Machine learning approach for detection of diabetic retinopathy with improved pre-processing. In Proceedings of the 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 19–20 February 2021; pp. 517–522. [Google Scholar]
- Mushtaq, G.; Siddiqui, F. Detection of diabetic retinopathy using deep learning methodology. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1070, 012049. [Google Scholar] [CrossRef]
- Albahli, S.; Nazir, T.; Irtaza, A.; Javed, A. Recognition and detection of diabetic retinopathy using densenet-65 based faster-RCNN. Comput. Mater. Contin. 2021, 67, 1333–1351. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, Z.; Li, X.; Zhang, N.; Zhang, M.; Wei, P. Ffu-net: Feature fusion u-net for lesion segmentation of diabetic retinopathy. BioMed Res. Int. 2021, 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Al-hazaimeh, O.M.; Abu-Ein, A.A.; Tahat, N.M.; Al-Smadi, M.M.A.; Al-Nawashi, M.M. Combining artificial intelligence and image processing for diagnosing diabetic retinopathy in retinal fundus images. Int. J. Online Biomed. Eng. 2022, 18, 131–151. [Google Scholar] [CrossRef]
- Valizadeh, A.; Ghoushchi, S.J.; Ranjbarzadeh, R.; Pourasad, Y. Presentation of a segmentation method for a diabetic retinopathy patient’s fundus region detection using a convolutional neural network. Comput. Intell. Neurosci. 2021, 2021, 7714351. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, M.L.; Shaikh, M.Z.; Sardar, V.M. Automated microaneurysms detection in fundus images for early diagnosis of diabetic retinopathy. In Data Engineering and Intelligent Computing; Springer: Singapore, 2021; pp. 87–95. [Google Scholar]
- Nair, A.T.; Muthuvel, K. Automated screening of diabetic retinopathy with optimized deep convolutional neural network: Enhanced moth flame model. J. Mech. Med. Biol. 2021, 21, 2150005. [Google Scholar] [CrossRef]
- Rathore, S.; Aswal, A.; Saranya, P. Bright lesion detection in retinal fundus images for diabetic retinopathy detection using machine learning approach. Ann. Rom. Soc. Cell Biol. 2021, 25, 4360–4367. [Google Scholar]
- Decencière, E.; Zhang, X.; Cazuguel, G.; Lay, B.; Cochener, B.; Trone, C.; Gain, P.; Ordonez, R.; Massin, P.; Erginay, A.; et al. Feedback on a publicly distributed image database: The Messidor database. Image Anal. Ster. 2014, 33, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Roshini, T.; Ravi, R.V.; Mathew, A.R.; Kadan, A.B.; Subbian, P.S. Automatic diagnosis of diabetic retinopathy with the aid of adaptive average filtering with optimized deep convolutional neural network. Int. J. Imaging Syst. Technol. 2020, 30, 1173–1193. [Google Scholar] [CrossRef]
- Pham, H.N.; Tan, R.J.; Cai, Y.T.; Mustafa, S.; Yeo, N.C.; Lim, H.J.; Do, T.T.T.; Nguyen, B.P.; Chua, M.C.H. Automated grading in diabetic retinopathy using image processing and modified efficientnet. In Computational Collective Intelligence; Springer International Publishing: Cham, Switerland, 2020; pp. 505–515. [Google Scholar]
- Mohan, N.J.; Murugan, R.; Goel, T.; Roy, P. An improved accuracy rate in microaneurysms detection in retinal fundus images using non-local mean filter. In Machine Learning, Image Processing, Network Security and Data Sciences; Springer: Singapore, 2020; pp. 183–193. [Google Scholar]
- Li, Y.-H.; Yeh, N.-N.; Chen, S.-J.; Chung, Y.-C. Computer-assisted diagnosis for diabetic retinopathy based on fundus images using deep convolutional neural network. Mob. Inf. Syst. 2019, 2019, 6142839. [Google Scholar] [CrossRef]
- Benzamin, A.; Chakraborty, C. Detection of hard exudates in retinal fundus images using deep learning. In Proceedings of the 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Kitakyushu, Japan, 25–29 June 2018; pp. 465–469. [Google Scholar]
- Kumar, S.; Adarsh, A.; Kumar, B.; Singh, A.K. An automated early diabetic retinopathy detection through improved blood vessel and optic disc segmentation. Opt. Laser Technol. 2020, 121, 105815. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- David, D.S. Retinal image classification system for diagnosis of diabetic retinopathy using morphological edge detection and feature extraction techniques. Artech J. Eff. Res. Eng. Technol. 2020, 1, 28–33. [Google Scholar]
- Bilal, A.; Sun, G.; Mazhar, S.; Imran, A.; Latif, J. A Transfer learning and U-Net-based automatic detection of diabetic retinopathy from fundus images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2022, 10, 663–674. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, P. Automated computer-aided diagnosis of diabetic retinopathy based on segmentation and classification using k-nearest neighbor algorithm in retinal images. Comput. J. 2022, bxac059. [Google Scholar] [CrossRef]
- Skouta, A.; Elmoufidi, A.; Jai-Andaloussi, S.; Ouchetto, O. Hemorrhage semantic segmentation in fundus images for the diagnosis of diabetic retinopathy by using a convolutional neural network. J. Big Data 2022, 9, 78. [Google Scholar] [CrossRef]
- Sau, P.C.; Bansal, A. A novel diabetic retinopathy grading using modified deep neural network with segmentation of blood vessels and retinal abnormalities. Multimed. Tools Appl. 2022, 81, 39605–39633. [Google Scholar] [CrossRef]
- Xia, H.; Lan, Y.; Song, S.; Li, H. A multi-scale segmentation-to-classification network for tiny microaneurysm detection in fundus images. Knowl.-Based Syst. 2021, 226, 107140. [Google Scholar] [CrossRef]
- Wan, C.; Chen, Y.; Li, H.; Zheng, B.; Chen, N.; Yang, W.; Wang, C.; Li, Y. EAD-Net: A novel lesion segmentation method in diabetic retinopathy using neural networks. Dis. Markers 2021, 2021, 6482665. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, J.; Li, J.; Pan, D.; Yue, X.; Zhu, Y. Optic disc segmentation by U-net and probability bubble in abnormal fundus images. Pattern Recognit. 2021, 117, 107971. [Google Scholar] [CrossRef]
- Das, S.; Kharbanda, K.; Suchetha, M.; Raman, R.; Dhas, E. Deep learning architecture based on segmented fundus image features for classification of diabetic retinopathy. Biomed. Signal Process. Control. 2021, 68, 102600. [Google Scholar] [CrossRef]
- Ghoushchi, S.J.; Ranjbarzadeh, R.; Dadkhah, A.H.; Pourasad, Y.; Bendechache, M. An extended approach to predict retinopathy in diabetic patients using the genetic algorithm and fuzzy C-means. BioMed Res. Int. 2021, 2021, 5597222. [Google Scholar] [CrossRef]
- Melo, T.; Mendonça, A.M.; Campilho, A. Microaneurysm detection in color eye fundus images for diabetic retinopathy screening. Comput. Biol. Med. 2020, 126, 103995. [Google Scholar] [CrossRef] [PubMed]
- Sambyal, N.; Saini, P.; Syal, R.; Gupta, V. Modified U-Net architecture for semantic segmentation of diabetic retinopathy images. Biocybern. Biomed. Eng. 2020, 40, 1094–1109. [Google Scholar] [CrossRef]
- Ali, A.; Qadri, S.; Mashwani, W.K.; Kumam, W.; Kumam, P.; Naeem, S.; Goktas, A.; Jamal, F.; Chesneau, C.; Anam, S.; et al. Machine learning based automated segmentation and hybrid feature analysis for diabetic retinopathy classification using fundus image. Entropy 2020, 22, 567. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.M.; Mehmood, M.; Naqvi, S.S.; Butt, M.F.U. A region growing and local adaptive thresholding-based optic disc detection. PLoS ONE 2020, 15, e0227566. [Google Scholar] [CrossRef] [Green Version]
- Furtado, P.; Baptista, C.; Paiva, I. Segmentation of diabetic retinopathy lesions by deep learning: Achievements and limitations. Bioimaging 2020, 95–101. [Google Scholar]
- Yan, Z.; Han, X.; Wang, C.; Qiu, Y.; Xiong, Z.; Cui, S. Learning mutually local-global U-Nets for high-resolution retinal lesion segmentation in fundus images. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 597–600. [Google Scholar]
- Khojasteh, P.; Júnior, L.A.P.; Carvalho, T.; Rezende, E.; Aliahmad, B.; Papa, J.P.; Kumar, D.K. Exudate detection in fundus images using deeply-learnable features. Comput. Biol. Med. 2019, 104, 62–69. [Google Scholar] [CrossRef]
- Chowdhury, A.R.; Chatterjee, T.; Banerjee, S. A random forest classifier-based approach in the detection of abnormalities in the retina. Med. Biol. Eng. Comput. 2019, 57, 193–203. [Google Scholar] [CrossRef]
- Xiao, Q.; Zou, J.; Yang, M.; Gaudio, A.; Kitani, K.; Smailagic, A.; Costa, P.; Xu, M. Improving lesion segmentation for diabetic retinopathy using adversarial learning. In Image Analysis and Recognition; Springer International Publishing: Cham, Switzerland, 2019; pp. 333–344. [Google Scholar]
- Saha, O.; Sathish, R.; Sheet, D. Fully convolutional neural network for semantic segmentation of anatomical structure and pathologies in colour fundus images associated with diabetic retinopathy. arXiv 2019, arXiv:1902.03122. [Google Scholar]
- Mohan, D.; Kumar, J.R.H.; Seelamantula, C.S. High-performance optic disc segmentation using convolutional neural networks. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4038–4042. [Google Scholar]
- Lam, C.; Yu, C.; Huang, L.; Rubin, D. Retinal lesion detection with deep learning using image patches. Investig. Opthalmo. Vis. Sci. 2018, 59, 590–596. [Google Scholar] [CrossRef]
- Kaur, J.; Mittal, D. A generalized method for the segmentation of exudates from pathological retinal fundus images. Biocybern. Biomed. Eng. 2018, 38, 27–53. [Google Scholar] [CrossRef]
- Yang, X.-S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. [Google Scholar]
- Abdullah, A.S.; Özok, Y.E.; Rahebi, J. A novel method for retinal optic disc detection using bat meta-heuristic algorithm. Med. Biol. Eng. Comput. 2018, 56, 2015–2024. [Google Scholar] [CrossRef] [PubMed]
- Amin, J.; Sharif, M.; Rehman, A.; Raza, M.; Mufti, M.R. Diabetic retinopathy detection and classification using hybrid feature set. Microsc. Res. Tech. 2018, 81, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Chalakkal, R.J.; Abdulla, W.H.; Thulaseedharan, S.S. Automatic detection and segmentation of optic disc and fovea in retinal images. IET Image Process. 2018, 12, 2100–2110. [Google Scholar] [CrossRef]
- Jaya, T.; Dheeba, J.; Singh, N.A. Detection of hard exudates in colour fundus images using fuzzy support vector machine-based expert system. J. Digit. Imaging 2015, 28, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Köse, C.; Şevik, U.; Ikibaş, C.; Erdöl, H. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images. Comput. Methods Programs Biomed. 2012, 107, 274–293. [Google Scholar] [CrossRef]
- Wahid, M.F.; Shahriar, M.F.; Sobuj, M.S.I. A classical approach to handcrafted feature extraction techniques for bangla handwritten digit recognition. In Proceedings of the 2021 International Conference on Electronics, Communications and Information Technology (ICECIT), Khulna, Bangladesh, 14–16 September 2021; pp. 1–4. [Google Scholar]
- Zafar, M.; Sharif, M.I.; Sharif, M.I.; Kadry, S.; Bukhari, S.A.C.; Rauf, H.T. Skin lesion analysis and cancer detection based on machine/deep learning techniques: A comprehensive survey. Life 2023, 13, 146. [Google Scholar] [CrossRef]
- Nanni, L.; Ghidoni, S.; Brahnam, S. Handcrafted vs. non-handcrafted features for computer vision classification. Pattern Recognit. 2017, 71, 158–172. [Google Scholar] [CrossRef]
- Sivapriya, G.; Praveen, V.; Gowri, P.; Saranya, S.; Sweetha, S.; Shekar, K. Segmentation of hard exudates for the detection of diabetic retinopathy with RNN based sematic features using fundus images. Mater. Today Proc. 2022, 64, 693–701. [Google Scholar] [CrossRef]
- Barges, E.; Thabet, E. GLDM and Tamura features based KNN and particle swarm optimization for automatic diabetic retinopathy recognition system. Multimed. Tools Appl. 2022, 82, 271–295. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Yasmin, M.; Fernandes, S.L. A distinctive approach in brain tumor detection and classification using MRI. Pattern Recognit. Lett. 2020, 139, 118–127. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Yasmin, M.; Ali, H.; Fernandes, S.L. A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions. J. Comput. Sci. 2017, 19, 153–164. [Google Scholar] [CrossRef]
- Sharif, M.I.; Li, J.P.; Amin, J.; Sharif, A. An improved framework for brain tumor analysis using MRI based on YOLOv2 and convolutional neural network. Complex Intell. Syst. 2021, 7, 2023–2036. [Google Scholar] [CrossRef]
- Saba, T.; Mohamed, A.S.; El-Affendi, M.; Amin, J.; Sharif, M. Brain tumor detection using fusion of hand crafted and deep learning features. Cogn. Syst. Res. 2020, 59, 221–230. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Raza, M.; Saba, T.; Anjum, M.A. Brain tumor detection using statistical and machine learning method. Comput. Methods Programs Biomed. 2019, 177, 69–79. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Raza, M.; Yasmin, M. Detection of brain tumor based on features fusion and machine learning. J. Ambient. Intell. Humaniz. Comput. 2018, 1–17. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Gul, N.; Yasmin, M.; Shad, S.A. Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network. Pattern Recognit. Lett. 2020, 129, 115–122. [Google Scholar] [CrossRef]
- Sharif, M.; Amin, J.; Raza, M.; Yasmin, M.; Satapathy, S.C. An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recognit. Lett. 2020, 129, 150–157. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Yasmin, M.; Saba, T.; Anjum, M.A.; Fernandes, S.L. A new approach for brain tumor segmentation and classification based on score level fusion using transfer learning. J. Med. Syst. 2019, 43, 1–16. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Raza, M.; Saba, T.; Sial, R.; Shad, S.A. Brain tumor detection: A long short-term memory (LSTM)-based learning model. Neural Comput. Appl. 2020, 32, 15965–15973. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Raza, M.; Saba, T.; Rehman, A. Brain tumor classification: Feature fusion. In Proceedings of the 2019 International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia, 3–4 April 2019; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar]
- Amin, J.; Sharif, M.; Yasmin, M.; Saba, T.; Raza, M. Use of machine intelligence to conduct analysis of human brain data for detection of abnormalities in its cognitive functions. Multimed. Tools Appl. 2020, 79, 10955–10973. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, A.; Gul, N.; Anjum, M.A.; Nisar, M.W.; Azam, F.; Bukhari, S.A.C. Integrated design of deep features fusion for localization and classification of skin cancer. Pattern Recognit. Lett. 2020, 131, 63–70. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Gul, N.; Raza, M.; Anjum, M.A.; Nisar, M.W.; Bukhari, S.A.C. Brain tumor detection by using stacked autoencoders in deep learning. J. Med. Syst. 2020, 44, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.; Amin, J.; Raza, M.; Anjum, M.A.; Afzal, H.; Shad, S.A. Brain tumor detection based on extreme learning. Neural Comput. Appl. 2020, 32, 15975–15987. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Anjum, M.A.; Raza, M.; Bukhari, S.A.C. Convolutional neural network with batch normalization for glioma and stroke lesion detection using MRI. Cogn. Syst. Res. 2020, 59, 304–311. [Google Scholar] [CrossRef]
- Muhammad, N.; Sharif, M.; Amin, J.; Mehboob, R.; Gilani, S.A.; Bibi, N.; Javed, H.; Ahmed, N. Neurochemical Alterations in sudden unexplained perinatal deaths—A review. Front. Pediatr. 2018, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.; Amin, J.; Nisar, M.W.; Anjum, M.A.; Muhammad, N.; Shad, S. A unified patch based method for brain tumor detection using features fusion. Cogn. Syst. Res. 2020, 59, 273–286. [Google Scholar] [CrossRef]
- Sharif, M.; Amin, J.; Siddiqa, A.; Khan, H.U.; Malik, M.S.A.; Anjum, M.A.; Kadry, S. Recognition of different types of leukocytes using YOLOv2 and optimized bag-of-features. IEEE Access 2020, 8, 167448–167459. [Google Scholar] [CrossRef]
- Anjum, M.A.; Amin, J.; Sharif, M.; Khan, H.U.; Malik, M.S.A.; Kadry, S. Deep semantic segmentation and multi-class skin lesion classification based on convolutional neural network. IEEE Access 2020, 8, 129668–129678. [Google Scholar] [CrossRef]
- Sharif, M.; Amin, J.; Yasmin, M.; Rehman, A. Efficient hybrid approach to segment and classify exudates for DR prediction. Multimed. Tools Appl. 2020, 79, 11107–11123. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Anjum, M.A.; Khan, H.U.; Malik, M.S.A.; Kadry, S. An integrated design for classification and localization of diabetic foot ulcer based on CNN and YOLOv2-DFU models. IEEE Access 2020, 8, 228586–228597. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Yasmin, M. Segmentation and classification of lung cancer: A review. Immunol. Endocr. Metab. Agents Med. Chem. (Former. Curr. Med. Chem. Immunol. Endocr. Metab. Agents) 2016, 16, 82–99. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Anjum, M.A.; Nam, Y.; Kadry, S.; Taniar, D. Diagnosis of COVID-19 infection using three-dimensional semantic segmentation and classification of computed tomography images. Comput. Mater. Contin. 2021, 68, 2451–2467. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Gul, E.; Nayak, R.S. 3D-semantic segmentation and classification of stomach infections using uncertainty aware deep neural networks. Complex Intell. Syst. 2021, 8, 3041–3057. [Google Scholar] [CrossRef]
- Amin, J.; Anjum, M.A.; Sharif, M.; Saba, T.; Tariq, U. An intelligence design for detection and classification of COVID19 using fusion of classical and convolutional neural network and improved microscopic features selection approach. Microsc. Res. Tech. 2021, 84, 2254–2267. [Google Scholar] [CrossRef]
- Amin, J.; Anjum, M.A.; Sharif, M.; Kadry, S.; Nam, Y.; Wang, S. Convolutional Bi-LSTM based human gait recognition using video sequences. CMC-Comput. Mater. Contin. 2021, 68, 2693–2709. [Google Scholar] [CrossRef]
- Amin, J.; Anjum, M.A.; Sharif, M.; Rehman, A.; Saba, T.; Zahra, R. Microscopic segmentation and classification of COVID-19 infection with ensemble convolutional neural network. Microsc. Res. Tech. 2021, 85, 385–397. [Google Scholar] [CrossRef]
- Saleem, S.; Amin, J.; Sharif, M.; Anjum, M.A.; Iqbal, M.; Wang, S.-H. A deep network designed for segmentation and classification of leukemia using fusion of the transfer learning models. Complex Intell. Syst. 2021, 8, 3105–3120. [Google Scholar] [CrossRef]
- Umer, M.J.; Amin, J.; Sharif, M.; Anjum, M.A.; Azam, F.; Shah, J.H. An integrated framework for COVID-19 classification based on classical and quantum transfer learning from a chest radiograph. Concurr. Comput. Pract. Exp. 2021, 34, e6434. [Google Scholar] [CrossRef]
- Amin, J.; Anjum, M.A.; Sharif, M.; Kadry, S.; Nam, Y. Fruits and vegetable diseases recognition using convolutional neural networks. Comput. Mater. Contin. 2021, 70, 619–635. [Google Scholar] [CrossRef]
- Linsky, T.W.; Vergara, R.; Codina, N.; Nelson, J.W.; Walker, M.J.; Su, W.; Barnes, C.O.; Hsiang, T.Y.; Esser-Nobis, K.; Yu, K.; et al. De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science 2020, 370, 1208–1214. [Google Scholar] [CrossRef]
- Bhimavarapu, U.; Battineni, G. Automatic microaneurysms detection for early diagnosis of diabetic retinopathy using improved discrete particle swarm optimization. J. Pers. Med. 2022, 12, 317. [Google Scholar] [CrossRef] [PubMed]
- Berbar, M.A. Features extraction using encoded local binary pattern for detection and grading diabetic retinopathy. Health Inf. Sci. Syst. 2022, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Hardas, M.; Mathur, S.; Bhaskar, A.; Kalla, M. Retinal fundus image classification for diabetic retinopathy using SVM predictions. Phys. Eng. Sci. Med. 2022, 45, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tamim, N.; Elshrkawey, M.; Nassar, H. Accurate diagnosis of diabetic retinopathy and glaucoma using retinal fundus images based on hybrid features and genetic algorithm. Appl. Sci. 2021, 11, 6178. [Google Scholar] [CrossRef]
- Ramasamy, L.K.; Padinjappurathu, S.G.; Kadry, S.; Damaševičius, R. Detection of diabetic retinopathy using a fusion of textural and ridgelet features of retinal images and sequential minimal optimization classifier. PeerJ Comput. Sci. 2021, 7, e456. [Google Scholar] [CrossRef] [PubMed]
- Gharaibeh, N.; Al-Hazaimeh, O.M.; Al-Naami, B.; Nahar, K.M. An effective image processing method for detection of diabetic retinopathy diseases from retinal fundus images. Int. J. Signal Imaging Syst. Eng. 2018, 11, 206–216. [Google Scholar] [CrossRef]
- Orfao, J.; van der Haar, D. A comparison of computer vision methods for the combined detection of glaucoma, diabetic retinopathy and cataracts. In Medical Image Understanding and Analysis; Springer International Publishing: Cham, Switzerland, 2021; pp. 30–42. [Google Scholar]
- Hatua, A.; Subudhi, B.N.; Veerakumar, T.; Ghosh, A. Early detection of diabetic retinopathy from big data in hadoop framework. Displays 2021, 70, 102061. [Google Scholar] [CrossRef]
- Bibi, I.; Mir, J.; Raja, G. Automated detection of diabetic retinopathy in fundus images using fused features. Phys. Eng. Sci. Med. 2020, 43, 1253–1264. [Google Scholar] [CrossRef]
- Deepa, V.; Kumar, C.S.; Andrews, S.S. Automated Grading of Diabetic Retinopathy using Local-Spatial Descriptors. In Proceedings of the 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, 2–4 October 2020; pp. 660–664. [Google Scholar]
- Yaqoob, M.K.; Ali, S.F.; Kareem, I.; Fraz, M.M. Feature-based optimized deep residual network architecture for diabetic retinopathy detection. In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 5–7 November 2020; pp. 1–6. [Google Scholar]
- Srivastava, V.; Purwar, R.K. Classification of eye-fundus images with diabetic retinopathy using shape based features integrated into a convolutional neural network. J. Inf. Optim. Sci. 2020, 41, 217–227. [Google Scholar] [CrossRef]
- Jadhav, A.S.; Patil, P.B.; Biradar, S. Analysis on diagnosing diabetic retinopathy by segmenting blood vessels, optic disc and retinal abnormalities. J. Med. Eng. Technol. 2020, 44, 299–316. [Google Scholar] [CrossRef]
- Honnungar, S.; Mehra, S.; Joseph, S. Diabetic retinopathy identification and severity classification. Fall 2016, 2016. [Google Scholar]
- Claro, M.; Veras, R.; Santana, A.; Araújo, F.; Silva, R.; Almeida, J.; Leite, D. An hybrid feature space from texture information and transfer learning for glaucoma classification. J. Vis. Commun. Image Represent. 2019, 64, 102597. [Google Scholar] [CrossRef]
- Anupama, B.C.; Rao, S.N. Performance analysis of learning algorithms for automated detection of glaucoma. Int. Res. J. Eng. Technol. 2019, 6, 1992–1998. [Google Scholar]
- Leeza, M.; Farooq, H. Detection of severity level of diabetic retinopathy using Bag of features model. IET Comput. Vis. 2019, 13, 523–530. [Google Scholar] [CrossRef]
- Kamil, R.; Al-Saedi, K.; Al-Azawi, R. An accurate system to measure the diabetic retinopathy using svm classifier. Ciência Técnica Vitivinícola 2018, 33, 135–139. [Google Scholar]
- Levenkova, A.; Sowmya, A.; Kalloniatis, M.; Ly, A.; Ho, A. Automatic detection of diabetic retinopathy features in ultra-wide field retinal images. In Proceedings of the Medical Imaging 2017: Computer-Aided Diagnosis, Orlando, FL, USA, 11–16 February 2017; SPIE, 2017; Volume 10134, pp. 409–416. [Google Scholar]
- Sungheetha, A.; Sharma, R. Design an early detection and classification for diabetic retinopathy by deep feature extraction based convolution neural network. J. Trends Comput. Sci. Smart Technol. 2021, 3, 81–94. [Google Scholar] [CrossRef]
- Ragab, M.; Aljedaibi, W.H.; Nahhas, A.F.; Alzahrani, I.R. Computer aided diagnosis of diabetic retinopathy grading using spiking neural network. Comput. Electr. Eng. 2022, 101, 108014. [Google Scholar] [CrossRef]
- Murugappan, M.; Prakash, N.; Jeya, R.; Mohanarathinam, A.; Hemalakshmi, G.; Mahmud, M. A novel few-shot classification framework for diabetic retinopathy detection and grading. Measurement 2022, 200, 111485. [Google Scholar] [CrossRef]
- Fang, L.; Qiao, H. Diabetic retinopathy classification using a novel DAG network based on multi-feature of fundus images. Biomed. Signal Process. Control. 2022, 77, 103810. [Google Scholar] [CrossRef]
- Vijayalakshmi, P.S.; Kumar, M.J. An improved grey wolf optimization algorithm (IGWO) for the detection of diabetic retinopathy using convnets and region based segmentation techniques. Int. J. Health Sci. 2022, 13100–13118. [Google Scholar] [CrossRef]
- Gundluru, N.; Rajput, D.S.; Lakshmanna, K.; Kaluri, R.; Shorfuzzaman, M.; Uddin, M.; Khan, M.A.R. Enhancement of detection of diabetic retinopathy using Harris Hawks optimization with deep learning model. Comput. Intell. Neurosci. 2022, 2022, 8512469. [Google Scholar] [CrossRef]
- AbdelMaksoud, E.; Barakat, S.; Elmogy, M. A computer-aided diagnosis system for detecting various diabetic retinopathy grades based on a hybrid deep learning technique. Med. Biol. Eng. Comput. 2022, 60, 2015–2038. [Google Scholar] [CrossRef]
- Yaqoob, M.; Ali, S.; Bilal, M.; Hanif, M.; Al-Saggaf, U. ResNet based deep features and random forest classifier for diabetic retinopathy detection. Sensors 2021, 21, 3883. [Google Scholar] [CrossRef]
- Mohan, N.J.; Murugan, R.; Goel, T.; Mirjalili, S.; Roy, P. A novel four-step feature selection technique for diabetic retinopathy grading. Phys. Eng. Sci. Med. 2021, 44, 1351–1366. [Google Scholar] [CrossRef]
- Atteia, G.; Samee, N.A.; Hassan, H.Z. DFTSA-Net: Deep feature transfer-based stacked autoencoder network for DME diagnosis. Entropy 2021, 23, 1251. [Google Scholar] [CrossRef]
- Bodapati, J.D.; Naralasetti, V.; Shareef, S.N.; Hakak, S.; Bilal, M.; Maddikunta, P.K.R.; Jo, O. Blended multi-modal deep convnet features for diabetic retinopathy severity prediction. Electronics 2020, 9, 914. [Google Scholar] [CrossRef]
- Gharaibeh, N.; Al-Hazaimeh, O.M.; Abu-Ein, A.; Nahar, K.M. A hybrid svm naïve-bayes classifier for bright lesions recognition in eye fundus images. Int. J. Electr. Eng. Informatics 2021, 13, 530–545. [Google Scholar] [CrossRef]
- Mateen, M.; Wen, J.; Nasrullah, N.; Sun, S.; Hayat, S. Exudate detection for diabetic retinopathy using pretrained convolutional neural networks. Complexity 2020, 2020, 5801870. [Google Scholar] [CrossRef] [Green Version]
- Paradisa, R.H.; Sarwinda, D.; Bustamam, A.; Argyadiva, T. Classification of diabetic retinopathy through deep feature extraction and classic machine learning approach. In Proceedings of the 2020 3rd International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 24–25 November 2020; pp. 377–381. [Google Scholar]
- Nazir, T.; Irtaza, A.; Rashid, J.; Nawaz, M.; Mehmood, T. Diabetic retinopathy lesions detection using faster-RCNN from retinal images. In Proceedings of the 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH), Riyadh, Saudi Arabia, 3–5 November 2020; pp. 38–42. [Google Scholar]
- Rehman, M.U.; Khan, S.H.; Abbas, Z.; Rizvi, S.D. Classification of diabetic retinopathy images based on customised CNN architecture. In Proceedings of the 2019 Amity International Conference on Artificial Intelligence (AICAI), Dubai, United Arab Emirates, 4–6 February 2019; pp. 244–248. [Google Scholar]
- Qummar, S.; Khan, F.G.; Shah, S.; Khan, A.; Shamshirband, S.; Rehman, Z.U.; Khan, I.A.; Jadoon, W. A deep learning ensemble approach for diabetic retinopathy detection. IEEE Access 2019, 7, 150530–150539. [Google Scholar] [CrossRef]
- Chan, G.C.Y.; Shah, S.A.A.; Tang, T.B.; Lu, C.-K.; Muller, H.; Meriaudeau, F. Deep features and data reduction for classification of SD-OCT images: Application to diabetic macular edema. In Proceedings of the 2018 International Conference on Intelligent and Advanced System (ICIAS), Kuala Lumpur, Malaysia, 13–14 August 2018; pp. 1–4. [Google Scholar]
- Mansour, R.F. Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy. Biomed. Eng. Lett. 2018, 8, 41–57. [Google Scholar] [CrossRef]
- Gargeya, R.; Leng, T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology 2017, 124, 962–969. [Google Scholar] [CrossRef]
- Gadekallu, T.R.; Khare, N.; Bhattacharya, S.; Singh, S.; Maddikunta, P.K.R.; Ra, I.-H.; Alazab, M. Early detection of diabetic retinopathy using PCA-firefly based deep learning model. Electronics 2020, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Welikala, R.; Fraz, M.; Dehmeshki, J.; Hoppe, A.; Tah, V.; Mann, S.; Williamson, T.; Barman, S. Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy. Comput. Med. Imaging Graph. 2015, 43, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Herliana, A.; Arifin, T.; Susanti, S.; Hikmah, A.B. Feature selection of diabetic retinopathy disease using particle swarm optimization and neural network. In Proceedings of the 2018 6th International Conference on Cyber and IT Service Management (CITSM), Parapat, Indonesia, 7–9 August 2018; pp. 1–4. [Google Scholar]
- Le, T.M.; Vo, T.M.; Pham, T.N.; Dao, S.V.T. A novel wrapper–Based feature selection for early diabetes prediction enhanced with a metaheuristic. IEEE Access 2021, 9, 7869–7884. [Google Scholar] [CrossRef]
- Bilal, A.; Sun, G.; Mazhar, S.; Imran, A. Improved Grey Wolf optimization-based feature selection and classification using CNN for diabetic retinopathy detection. In Evolutionary Computing and Mobile Sustainable Networks; Springer: Singapore, 2022; pp. 1–14. [Google Scholar]
- Lohrmann, C.; Luukka, P. Fuzzy similarity and entropy (FSAE) feature selection revisited by using intra-class entropy and a normalized scaling factor. In Intelligent Systems and Applications in Business and Finance; Luukka, P., Stoklasa, J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 61–92. [Google Scholar]
- Abràmoff, M.D.; Lou, Y.; Erginay, A.; Clarida, W.; Amelon, R.; Folk, J.C.; Niemeijer, M. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5200–5206. [Google Scholar] [CrossRef] [Green Version]
- Decencière, E.; Cazuguel, G.; Zhang, X.; Thibault, G.; Klein, J.-C.; Meyer, F.; Marcotegui, B.; Quellec, G.; Lamard, M.; Danno, R.; et al. TeleOphta: Machine learning and image processing methods for teleophthalmology. IRBM 2013, 34, 196–203. [Google Scholar] [CrossRef]
- Hoover, A.D.; Kouznetsova, V.; Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 2000, 19, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Staal, J.; Abramoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [Google Scholar] [CrossRef]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Kauppi, T.; Kalesnykiene, V.; Kamarainen, J.K.; Lensu, L.; Sorri, I.; Uusitalo, H.; Kälviäinen, H.; Pietilä, J. DIARETDB0: Evaluation database and methodology for diabetic retinopathy algorithms. Mach. Vis. Pattern Recognit. Res. Group Lappeenranta Univ. Technol. Finl. 2006, 73, 1–17. [Google Scholar]
- Kauppi, T.; Kalesnykiene, V.; Kamarainen, J.-K.; Lensu, L.; Sorri, I.; Raninen, A.; Voutilainen, R.; Uusitalo, H.; Kalviainen, H.; Pietila, J. The diaretdb1 diabetic retinopathy database and evaluation protocol. In Proceedings of the British Machine Vision Conference 2007, Coventry, UK, 10–13 September 2007; Volume 1, p. 10. [Google Scholar]
- Naqvi, S.A.G.; Zafar, M.F.; Haq, I.U. Referral system for hard exudates in eye fundus. Comput. Biol. Med. 2015, 64, 217–235. [Google Scholar] [CrossRef] [PubMed]
- Fraz, M.M.; Remagnino, P.; Hoppe, A.; Uyyanonvara, B.; Rudnicka, A.R.; Owen, C.G.; Barman, S.A. An Ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 2012, 59, 2538–2548. [Google Scholar] [CrossRef] [PubMed]
- Niemeijer, M.; van Ginneken, B.; Cree, M.J.; Mizutani, A.; Quellec, G.; Sanchez, C.I.; Zhang, B.; Hornero, R.; Lamard, M.; Muramatsu, C.; et al. Retinopathy online challenge: Automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans. Med. Imaging 2010, 29, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Budai, A.; Bock, R.; Maier, A.; Hornegger, J.; Michelson, G. Robust vessel segmentation in fundus images. Int. J. Biomed. Imaging 2013, 2013, 154860. [Google Scholar] [CrossRef] [Green Version]
- Rokade, P.M.; Manza, R.R.J. Automatic detection of hard exudates in retinal images using haar wavelet transform. Eye 2015, 4, 402–410. [Google Scholar]
- Prentašić, P.; Lončarić, S.; Vatavuk, Z.; Benčić, G.; Subašić, M.; Petković, T.; Dujmović, L.; Malenica-Ravlić, M.; Budimlija, N.; Tadić, R. Diabetic retinopathy image database(DRiDB): A new database for diabetic retinopathy screening programs research. In Proceedings of the 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), Trieste, Italy, 4–6 September 2013; pp. 711–716. [Google Scholar]
- Alyoubi, W.L.; Shalash, W.M.; Abulkhair, M.F. Diabetic retinopathy detection through deep learning techniques: A review. Inform. Med. Unlocked 2020, 20, 100377. [Google Scholar] [CrossRef]
- Bandara, A.; Giragama, P. A retinal image enhancement technique for blood vessel segmentation algorithm. In Proceedings of the 2017 IEEE International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, 15–16 December 2017; pp. 1–5. [Google Scholar]
- Gondal, W.M.; Köhler, J.M.; Grzeszick, R.; Fink, G.A.; Hirsch, M. Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 2069–2073. [Google Scholar]
- Jeena, R.; Kumar, A.S.; Mahadevan, K. Stroke diagnosis from retinal fundus images using multi texture analysis. J. Intell. Fuzzy Syst. 2019, 36, 2025–2032. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, X.; Ren, J. Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recognit. 2019, 88, 331–341. [Google Scholar] [CrossRef]
- Li, X.; Pang, T.; Xiong, B.; Liu, W.; Liang, P.; Wang, T. Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. In Proceedings of the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 14–16 October 2017; pp. 1–11. [Google Scholar]
- Kwasigroch, A.; Jarzembinski, B.; Grochowski, M. Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy. In Proceedings of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Świnoujście, Poland, 9–12 May 2018; pp. 111–116. [Google Scholar]
- Khojasteh, P.; Aliahmad, B.; Arjunan, S.P.; Kumar, D.K. Introducing a novel layer in convolutional neural network for automatic identification of diabetic retinopathy. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 5938–5941. [Google Scholar]
- Hasan, M.K.; Alam, M.A.; Elahi, M.T.; Roy, S.; Martí, R. DRNet: Segmentation and localization of optic disc and Fovea from diabetic retinopathy image. Artif. Intell. Med. 2021, 111, 102001. [Google Scholar] [CrossRef]
- Bengani, S. Automatic segmentation of optic disc in retinal fundus images using semi-supervised deep learning. Multimed. Tools Appl. 2021, 80, 3443–3468. [Google Scholar] [CrossRef]
- Le, D.; Alam, M.; Yao, C.K.; Lim, J.I.; Hsieh, Y.-T.; Chan, R.V.P.; Toslak, D.; Yao, X. Transfer learning for automated OCTA Detection of diabetic retinopathy. Transl. Vis. Sci. Technol. 2020, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Dietter, J.; Haq, W.; Ivanov, I.V.; Norrenberg, L.A.; Völker, M.; Dynowski, M.; Röck, D.; Ziemssen, F.; Leitritz, M.A.; Ueffing, M. Optic disc detection in the presence of strong technical artifacts. Biomed. Signal Process. Control. 2019, 53, 101535. [Google Scholar] [CrossRef]
- Li, F.; Liu, Z.; Chen, H.; Jiang, M.; Zhang, X.; Wu, Z. Automatic detection of diabetic retinopathy in retinal fundus photographs based on deep learning algorithm. Transl. Vis. Sci. Technol. 2019, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, P.; Galdran, A.; Smailagic, A.; Campilho, A. A weakly-supervised framework for interpretable diabetic retinopathy detection on retinal images. IEEE Access 2018, 6, 18747–18758. [Google Scholar] [CrossRef]
- Abbas, Q.; Fondon, I.; Sarmiento, A.; Jiménez, S.; Alemany, P. Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Med. Biol. Eng. Comput. 2017, 55, 1959–1974. [Google Scholar] [CrossRef] [PubMed]
- van Grinsven, M.J.J.P.; van Ginneken, B.; Hoyng, C.B.; Theelen, T.; Sanchez, C.I. Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images. IEEE Trans. Med. Imaging 2016, 35, 1273–1284. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Wong, D.W.K.; Wong, T.Y.; Liu, J. Glaucoma detection based on deep convolutional neural network. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 715–718. [Google Scholar]
- Worrall, D.E.; Wilson, C.M.; Brostow, G.J. Automated retinopathy of prematurity case detection with convolutional neural networks. In Deep Learning and Data Labeling for Medical Applications; Springer International Publishing: Cham, Switzerland, 2016; pp. 68–76. [Google Scholar]
Types of DR | Lesions |
---|---|
Normal | No DR lesions |
Mild NPDR | Develop MAs only |
Moderate NPDR | Increase in the number of MAs, HE, SE, and HMs in the retina. |
Severe NPDR | The unusual feature is visible in all four retinal quadrants. |
PDR | Irregular small vessels of blood present in the retina. |
Contents | Present Study | [16] | [17] | [18] | [19] | [20] |
---|---|---|---|---|---|---|
Methods for Identification of DR | ✓ | ✓ | ||||
Preprocessing | ✓ | ✓ | ||||
Segmentation | ✓ | ✓ | ✓ | ✓ | ||
Hand-Crafted Feature Extraction | ✓ | ✓ | ||||
Automated Classification of DR Lesions by Using Deep Features | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Benchmark Datasets | ✓ | ✓ | ✓ | ✓ | ✓ | |
Performance Evaluation | ✓ | ✓ | ✓ | |||
Challenges and Discussion | ✓ | ✓ | ✓ | ✓ | ✓ |
Ref # | Year | Methodology | Preprocessing Methods | Datasets | Results |
---|---|---|---|---|---|
[22] | 2022 | CLAHE, Contrast-Enhanced Canny Edge Detection (CECED) | CLAHE | Messidor, Kaggle | Accuracy (ACC) = 98.50%, Sensitivity (SF) = 98.90%, Specificity (SP) = 98%, ACC = 98%, SF = 98.70%, SP = 97.80% |
[23] | 2022 | Deformable Transformation, B-Spline Registration, Xception, Inception-V3, DenseNet-121, ResNet-50 | Deformable Registration | APTOS | ACC = 85.28% |
[24] | 2022 | Gaussian Scale Space (GST), Krizhevsky Augmentation, Weighted Gaussian Blur, NLMD | Weighted Gaussian Blur | Kaggle | ACC = 97.10% |
[38] | 2022 | Morphological Gradient, Atom Search Optimization | Morphological Gradient | Kaggle | ACC= 99.81% |
[39] | 2022 | MTRO, WGA, Grayscale Conversion, Shade Correction | Grayscale Conversion, Shade Correction | DRIVE | ACC = 95.42%, SF = 93.10%, SF = 93.20% |
[40] | 2022 | U-Net, Hybrid Entropy Model, Gabor Filter, Median Filter | Median Filter | DIARETDB0, DIARETDB1 | ACC = 95.90% ACC = 95.48% |
[41] | 2022 | Adaptive Histogram Equalization Filter, CLAHE, Gamma Correction, Morphological Reconstruction, K-Means Clustering | Adaptive Histogram Equalization Filter, CLAHE | Messidor | ACC = 97.60%, SN = 98.40%, SP = 90.70% |
[42] | 2022 | Data Augmentation, Cropping, Flipping, Rotation, Multi-Inception-V4, Stochastic Gradient Descent (SGD) | Data Augmentation, Cropping, Flipping, Rotation | Messidor-2 | ACC = 99.20%, SF = 92.50%, SP = 96.10% |
[43] | 2021 | Blurring, Bounding Box, Inception-Resnet | Bounding Box | Messidor, APTOS | ACC = 72.33%, ACC = 82.18% |
[44] | 2021 | CLAHE, Green Channel, Erosion, Dilation, Otsu Thresholding | CLAHE | Messidor, Messidor-2, DRISHTI-GS | SF = 100%, SF = 94.44%, SF = 100% |
[45] | 2021 | Grayscale Conversion, Binarization, Adaptive histogram Equalization, CLAHE Canny Edge Detection, Green Channel, Dilation, Erosion | Adaptive Histogram Equalization, CLAHE | DIARETDB0, DIARETDB1 | ACC = 87.20%, ACC = 85.80% |
[46] | 2021 | Gaussian Blur, Data Augmentation, Global Average Pooling 2D, Adam Optimization | Gaussian Blur | Kaggle | ACC = 90% |
[47] | 2021 | Annotation’s Bounding Box, Region of Interest, Gaussian Filter, Cropping, Contrast Variations | Gaussian Filter, Cropping | Kaggle, APTOS | ACC = 97.20% |
[48] | 2021 | U-Net, OTSU, Region of Interest, Gaussian Filter, CLAHE | Gaussian Filter, CLAHE | IDRID | SF = 87.55% |
[11] | 2021 | UNet, MResUNet, CLAHE, Cropping, Patching, Cumulative Histogram Equalization, Weighted Cross-Entropy Loss Function, Mathematical Morphology | CLAHE, Cumulative Histogram Equalization, Mathematical Morphology | IDRID, DiaretDB1 | SF = 61.96%, SF = 85.87% |
[50] | 2021 | Green Channel, CLAHE, Morphological Operation, Thresholding | CLAHE, Morphological Operation | IDRiD | ACC = 83.84% |
[51] | 2021 | Gabor Filter, SVM, Candidate Region | Gabor Filter | IDRiD | ACC = 80.80%, SF = 76.75% |
[52] | 2021 | High-Pass Filter, Morphological Operations, Top-Hat Filter, Gaussian Mixture Model (GMM) | High-Pass Filter, Morphological Operations, Top-Hat Filter | DIARETDB 0, DIARETDB 1, IDRiD | ACC = 94.19%, ACC = 97.43%, ACC = 93.18% |
[53] | 2021 | Channel Splitting, Blue Channel Hue Saturation Value (HSV), Patch Segmentation, Grayscale Conversion, SVM | Grayscale Conversion, Hue Saturation Value (HSV) | IDRiD | ACC = 96.95%, SF = 89%, SP = 96% |
[55] | 2020 | Threshold, Contrast-Enhanced, Adaptive Average Filter, Meta-Heuristic Algorithm (FP-CSO), Deep CNN, RGB to Lab, Histogram Equalization, Convert RGB to Lab, SIFT | RGB to Lab, Histogram Equalization | High-Resolution Fundus (HRF) | ACC = 93.30% |
[56] | 2020 | Efficientnet-B5, Batch Normalization, Rectified Adam Optimizer, Group Normalization, Gaussian Blur Mask, CLAHE, Local Average Color Filter | Local Average Color Filter, Gaussian Blur Mask, CLAHE | APTOS | ACC = 90% |
[60] | 2020 | Grayscale Conversion, Morphological Operations, Regional Minima (RMIN) Operator, CLAHE, Marker-Controlled Watershed Segmentation, Morphological Gradient (MG), Top-Hat Transform | Top-Hat Transform, Grayscale Conversion, Morphological Operations, CLAHE, Morphological Gradient (MG) | DIARETDB0, DIARETDB1 | SF = 87%, SP = 93% |
[57] | 2020 | Non-Local Mean Filter (NLFM), CLAHE, 2D Gaussian Low-Pass Filter, Top-Hat Transform, Green Channel | Non-Local Mean Filter (NLFM), CLAHE, 2D Gaussian Low-Pass Filter | e-Ophtha, DIARETDB0, DIARETDB1 | ACC = 96.95%, ACC = 97.95%, ACC = 97.35% |
[58] | 2019 | Local Average Filter, Clipping, Fractional, SVM, TLBO, Max-Pooling | Local Average Filter, Clipping | Kaggle | ACC = 86.17% |
[59] | 2018 | Image Resize, Wavelet Transform, Maxpool Operation, Batch Normalization, Drop Out, Adam Optimizer | Image Resize | IDRiD | ACC = 98.60% |
Ref # | Year | Methodology | Segmentation Techniques | Datasets | Results |
---|---|---|---|---|---|
[64] | 2022 | U-Net, VGG-Net, Image Resize, Green Channel | U-Net | EyePACS-1, Messidor-2, DIARETDB0 | ACC = 96.60%, ACC = 93.95%, ACC = 92.25% |
[65] | 2022 | Morphological Operation, 2D Discrete Wavelet, K-Nearest Neighbor | 2D Discrete Wavelet, Morphological Operation | DIARETDB1 | ACC = 95%, SP = 87.56%, SF = 92.60% |
[66] | 2022 | CNN U-Net, AlexNet, VGGNet, Green Channel, Adam Optimizer | CNN U-Net | IDRiD, DIARETDB1 | ACC = 98.68%, Dice Score = 86.51% |
[67] | 2022 | Adaptive Active Contour, Otsu Thresholding, Morphological Operation, Median Filtering, Open-Close Watershed Transform, GLCM, ROI, LTP | Adaptive Active Contour, Watershed Transform, Otsu Thresholding | IDRiD | ACC = 60% |
[68] | 2021 | MSRNet, MS-EfficientNet, U-Net, Adam Optimizer | MSRNet, U-Net | e_ophtha_MAs | SF = 71.50% |
[69] | 2021 | EAD-Net, U-Net, CAM, PAM | EAD-Net, U-Net | e_ophtha_EX, IDRiD, local dataset | ACC = 97%, ACC = 78%, ACC = 84.86 |
[70] | 2021 | U-Net, Model-Driven Bubble Approach, Hough Transform, IRHSF Illumination Correction, Logarithmic Transformation | U-Net | Messidor | ACC = 91% |
[72] | 2021 | Region Growing, Genetic Algorithm (GA), FCM, Clustering Method, K-Means | Region Growing | Local Dataset | SF = 78% |
[60] | 2020 | Watershed Transform, Mathematical Morphology Operation, CLAHE, RBF- NN, Regional Minima | Watershed Transform | DIARETDB0, DIARETDB1 | SF = 87%, SP = 93% |
[73] | 2020 | Local Convergence Filters (LCFs), Sliding Band Filter, De-Noising Techniques, Image-Adapted Thresholds, Region Growing, Non-Maximum Suppression (NMS) | Image-Adapted Threshold, Region Growing | e_ophtha_MAs, SCREEN-DR | SF = 64%, SF = 81% |
[74] | 2020 | U-Net, ResNet34, Initialized to Convolution NN Resize (ICNR) | U-Net | IDRiD, e_ophtha_MAs, e_ophtha_HE | ACC = 99.88%, ACC = 99.98%, ACC = 99.98% |
[75] | 2020 | Region Growing, Gaussian and Gabor Filters, Histogram Equalization, Grayscale Conversion, K-Means, Wavelet (W), COM, Histogram (H), RLM, LMT, SLg, Multi-Layer Perceptron (MLP) | K-Means Clustering, Region Growing Segmentation | 2D RF | ACC = 99.73% |
[76] | 2020 | Region Growing, Ellipse Fitting, Green Channel, Morphological Dilation Operation, Otsu Thresholding, Morphological Operation | Otsu Thresholding, Morphological Operation, Region Growing | Messidor, DIARETDB1, ONHSD, DRIONS, DRISHTI, RIM-ONE | ACC = 99% |
[77] | 2020 | Deep CNN, DeepLabV3, Segnet, Conditional Random Field (CRF) | DeepLabV3, Segnet | IDRID | ACC = 88% |
[78] | 2019 | U-Nets, LocalNet, GlobalNet, Fusion Module, Data Augmentation, Concatenate, Global Supervision, Local Supervision | U-Nets | ISBI 2018 | ACC = 89% |
[79] | 2019 | CNN, ResNet-50, Discriminative Restricted Boltzmann Machines, OPF, KNN, SVM | CNN | DIARETDB1, e_ophtha | ACC = 90.60%, ACC = 89.10% |
[80] | 2019 | Random Forest Classifier, K-Means, Naïve Bayes, Morphological Operation, Grayscale Conversion, Gamma Correction, Region-Based Features | K-Means, Morphological Operation | DIARETDB0, DIARETDB1 | ACC = 93.58%, ACC = 83.63% |
[81] | 2019 | U-Net, HEDNet, HEDNet+cGAN, Conditional Generative Adversarial Network (cGAN), PatchGAN, VGG16 Weighted Binary Cross-Entropy, Loss, CLAHE, Bilateral Filter | U-Net, HEDNet, HEDNet+cGAN | IDRiD | Precision = 84.05% |
[82] | 2019 | Deep-CNN, Binary Cross Entropy, VGG16 | Deep-CNN | IDRiD, Drishti-GS | Jaccard Index (IOU) = 85.72% |
[83] | 2018 | CNN-Based U-Net, Bootstrapped Cross-Entropy, Instance Normalization, Atrous Convolutions | CNN-Based U-Net | Messidor, DRIONS-DB, DRISHTI-GS | Dice = 95.70%, Dice = 95.50%, Dice = 96.40% |
[84] | 2018 | CNN, GoogLeNet, Inception-V3, VGG16, ResNet, AlexNet, Sliding Windows | CNN | Kaggle, e_ophtha | ACC = 98%, ACC = 95% |
[85] | 2018 | Dynamic Decision Thresholding, Adaptive Contrast Enhancement, Canny Edge Detection, Circular Hough Transform, Morphological Filling | Dynamic Decision Thresholding | Messidor, DIARETDB1, STARE, E_Optha_EX | ACC = 93.40%, ACC = 93.4%, ACC = 93.4%, ACC = 93.4% |
[87] | 2018 | Bat Meta-Heuristic Algorithm, Optimum Thresholding, Grayscale Conversion, Morphological Operations, Ellipse Fitting | Bat Meta-Heuristic Algorithm, Optimum Thresholding | Messidor, DIARETDB1 | ACC = 99%, ACC = 97% |
[88] | 2018 | Adaptive Threshold, Local Contrast Enhancement, Mathematical Morphology, Grayscale Conversion, Gaussian Smoothing, Histogram Equalization, ANN, KNN, Geometric, Tree-Based, and Probabilistic Classifier | Adaptive Threshold, Mathematical Morphology, Gaussian Smoothing, Histogram Equalization | DIARETDB1 | ACC = 100% |
[91] | 2018 | Circular Hough Transform, Morphological Operations, Average Histogram, Contrast Enhancement, CCA | Circular Hough Transform | Messidor, DRIVE, DIARETDB1, IDRiD, Local Dataset | SF = 96.80% |
[89] | 2015 | FSVM, Morphological Operations, Circular Hough Transform | Morphological Operations, Circular Hough Transform | Local Dataset | SF = 94.10%, SP = 90% |
[90] | 2012 | Naïve Bayes, Region Growing, and Background Correction | Adaptive Region Growing | Local Dataset | ACC = 95% |
Ref # | Year | Methodology | Hand-Crafted Feature Extraction Techniques | Datasets | Results |
---|---|---|---|---|---|
[95] | 2022 | RNN, Binary Image Extraction, Histogram Equalization, Pseudo-Color Preprocessing, GLCM | GLCM | Messidor | ACC = 97%, SP = 99%, SF = 95% |
[96] | 2022 | KNN, SVM, DA, GLCM, GLDM, GLRLM, PSO | GLCM, GLDM, GLRLM | Drive | ACC = 100% |
[130] | 2022 | PBPSO Clustering, GLCM, PSO Algorithm, ANN, Fuzzy Logic (FL), Neuro-Fuzzy, Fuzzy Contrast Enhancement | GLCM | DIARETDB0 | ACC = 99.90% |
[131] | 2022 | SVM, CNN, Histogram Matching, Green Channel, CLAHE, Unsharp Filter, Median Filter, Run-Length Encoding, LBF(ULBPEZ) | LBF (ULBPEZ) | Messidor-2, EyePACS | ACC = 97.31%, ACC = 93.86% |
[132] | 2022 | GMM, K-Means, GLCM, PCA, MAP, Grayscale Conversion, Morphological Operations, Average Filter, Adaptive Equalization, Histogram Equalization | GLCM | DIARETDB1 | ACC = 77.30% |
[133] | 2021 | FOS, HOS, HOG, Decision Tree (DT), Naive Bayes, KNN, Genetic Algorithm (GA) | FOS, HOS, HOG | High-Resolution Fundus (HRF) | ACC = 96.67% |
[134] | 2021 | Sequential Minimal Optimization (SMO), GLCM, GLRLM, CRT, Image Conversion, Morphological Operations | GLCM, GLRLM, CRT | DIARETDB1, Kaggle | ACC = 97.05%, ACC = 91% |
[136] | 2021 | HOG, GLCM, Green Channel, Grayscale Conversion, Inception-V3, SVM, SqueezeNet, Xception, DenseNet 201, ResNet50 v2 | HOG, GLCM | ODIR | ACC = 99.39% |
[137] | 2021 | HOG, PCA, KNN, Hadoop DFS | HOG | DIARETDB0, Messidor-2 | SP = 80.77%, SP = 96.42% |
[138] | 2020 | LBP, LTP, HOG, DSIFT, SVM, Grayscale Conversion, PCA, CLAHE | LBP, LTP, HOG, DSIFT | Local Dataset | SF = 96.40%, SP = 96.90% |
[139] | 2020 | SURF, Spatial LBP, CLAHE, ANN, ELM, KNN | SURF, Spatial LBP | Local Dataset, Kaggle, DIARETDB0, DIARETDB1 | ACC= 89.89% |
[140] | 2020 | ResNet-50, Inception-V3, Canny Edge Detector, HOG, Stochastic Gradient Descent (SGD) | HOG | MESSIDOR-2, EyePACS | ACC = 97.01%, ACC = 97.88% |
[141] | 2020 | CNN, Median Filter, Adaptive Histogram Equalization, Otsu Method, Radial Length (RL), Discrete Fourier Transformation (DFT), HOG | HOG | Local Dataset 1, Local Dataset 2 | Precision = 100%, Precision = 95.16% |
[142] | 2020 | Green Channel, CLAHE, Watershed Transform, Thresholding Method, Top-Hat Transformation, Gabor Filtering, LBP, TEM, Entropy, DBN, NN | LBP, TEM, Entropy-Based | DIARETDB1 | ACC = 94.30% |
[143] | 2019 | SURF, LOG, BoF, Box Filters, K-Means Clustering, ANN, SVM | SURF, LOG | Messidor | SF = 95.92%, SP = 98.90% |
[144] | 2019 | CNNVgg-s, CNN-Vgg-m, CNNVgg-f, CNN-CaffeNet, GLRLM, GLCM, HOG, LBP, Morphology, SVM, MLP, Random Forest | GLCM, LBP, HOG | HRF, JSIEC, ACRIMA | ACC = 95.30%, ACC = 98.10%, ACC = 99.10% |
[145] | 2019 | SVM, KNN, Green Channel, CLAHE, Wavelet Transform, Shearlet Transform, HOG, LBP, GLCM, GLDM | HOG, LBP, GLCM, GLDM | Local Dataset | ACC = 93.61% |
[147] | 2018 | Bag-of-Words (BoW), SVM, SURF, Redial Basis Function (RBF) | SURF | Messidor | ACC = 94% SF = 91% SP = 93% |
[148] | 2017 | HOG, LBP, Decision Tree (DT), Random Forest (RF), SVM | HOG, LBP | Local Dataset | ACC = 95.31% |
[142] | 2016 | SURF, LBP, HOG, SVM, CNN, Logistic Regression, Random Forest, Crop and Resize, Green Channel, CLAHE, Median Filter | SURF, LBP, HOG | Kaggle | ACC = 97% |
Ref # | Year | Methodology | Deep Feature Extraction Method | Classifiers | Datasets | Results |
---|---|---|---|---|---|---|
[151] | 2022 | Kapur’s Entropy, COA-DN, SNN, Image Rescale, Clipping | COA-DN | SNN | Messidor | ACC = 99.73% |
[152] | 2022 | AlexNet, VGG16, ResNet, Inception-V3, SVM, DRNET, Few-Shot Learning (FSL), GCAMs | DRNet | SVM | APTOS2019 | ACC = 99.73%, SF = 99.82%, SP = 99.63% |
[153] | 2022 | DAG, Softmax, ReLU, Convolution, Contrast Enhancement, CLAHE, Binarization Threshold, Fuzzy Clustering | DAG Network | Softmax | DIARETDB1, Local Dataset | ACC = 98.70%, ACC = 98.70% |
[154] | 2022 | CLAHE, Median Filter, Gaussian Filter, Min–Max Normalization, RBT, iGWO, FF0, CNN, IGWO-FFO | IGWO-FFO | CNN Softmax | APTOS2019 | ACC = 94.11% |
[155] | 2022 | KNN, XGBOOT, SVM, PCA, HHO, DT, DNN-PCA-HHO | DNN-PCA-HHO | KNN, XGBOOT, SVM | UCI | ACC = 97% |
[156] | 2022 | CNN, EyeNet, DenseNet E-DenseNet, Average Pooling (GAP) | E-DenseNet | Softmax | IDRiD, Messidor, EyePACS, APTOS 2019 | ACC = 93%, ACC = 91.60%, ACC = 96.80%, ACC = 84% |
[157] | 2022 | CLAHE, Weighted Gaussian Blur, Average Pooling, Augmentation, VGGNet | VGGNet | Average Pooling | EyePACS | ACC = 97.10% |
[48] | 2021 | Faster-RCNN, DenseNet-65, Gaussian Filter, VGG, AlexNet, ResNet | Faster-RCNN | DenseNet-65 | Kaggle, APTOS | ACC = 97.20% |
[158] | 2021 | Random Forest, ResNet-50, MobileNet, VGG16, VGG-19, Xception, Inception-V3 | ResNet-50 | Random Forest | Messidor-2, EyePACS | ACC = 96%, ACC = 75.09% |
[159] | 2021 | Inception-V3, ResNet101, VGG-19, Naïve Bayes, KNN, SVM | Inception-V3, ResNet101, Vgg19 | SVM | Kaggle, Messidor-2, IDRiD | ACC = 97.78%, SF = 97.60%, SP = 99.30% |
[160] | 2021 | CNN, SqueezeNet, ResNet-50, Inception-V3, DFTSA-Net, CLAHE | DFTSA-Net | Softmax | IDRiD | ACC = 96.80%, SF = 97.50%, SP = 95.50% |
[161] | 2020 | DNN, KNN, SVM, MLP, VGG16, Xception, ResNetV2, NASNET | VGG16, Xception, ResNetV2, NASNET | DNN, KNN, SVM, Naïve Bayes Classifier, Decision Tree, Logistic Regression, MLP | APTOS 2019 | ACC = 97.41% |
[163] | 2020 | CNN, Inception-V3, Softmax, GMM, ALR | Inception-V3, | Softmax | e-Ophtha, DIARETDB1 | ACC = 98.43%, ACC = 98.91% |
[164] | 2020 | CNN, CLAHE, ResNet-50, SVM, KNN, Random Forest, XGBoost | ResNet-50 | SVM, KNN, Random Forest, XGBoost | DIARETDB1 | ACC = 99% |
[165] | 2020 | RCNN, Morphological Operation, RPN, Softmax, Bounding Box | Faster-RCNN | Softmax | Messidor | ACC = 96.80% |
[166] | 2019 | Cropping, Resizing, Histogram Equalization, CNN, VGG-16, SqueezeNet, AlexNet | Convolution Layers | VGG-16, SqueezeNet, AlexNet | Messidor | ACC = 98.15% |
[167] | 2019 | CNN, Deep CNN, Inception-V3, Dense-169, ResNet-50, Xception, Dense-121, | Dense-121, Inception-V3, Dense-169, Xception ResNet-50 | Binary Classification, Multi-Class Classification | Kaggle | SP = 99% |
[168] | 2018 | PCA, Bag of Words (Bow), CNN, AlexNet | AlexNet | SVM | SD-OCT | ACC = 96.80% SF = 93.75% SP= 100% |
[169] | 2018 | CNN, AlexNet DNN, SVM, PCA, LDA, SIFT, Histogram Equalization, GMM | AlexNet DNN | SVM | Kaggle | ACC = 97.93% |
[170] | 2017 | Augmentation, Image Transformation, Contrast Enhancement, Decision Tree | Residual Network | Decision Tree | Messidor-2, e-Ophtha, EyePACS | SP = 87%, SP = 94%, SP = 98% |
Ref # | Datasets | Image Resolution | Image Acquisition | Availability | No. of Images | Use |
---|---|---|---|---|---|---|
[177] | Messidor-2 | 1440 × 960, 2240 × 1488, 2304 × 1536 | Topcon Digital Camera with 45-Degree Field of View | Online/Free | 1748 | MA, HM, and Retinal Vessel Detection |
[178] | E_ophtha Ex and E_ophtha_MAs | 2048 × 1360 | Captured by OPHDIAT | Online/Free | 463 | MA and Ex Detection |
[179] | STARE | 605 × 700 | Topcon TRV 50 35 Field of View | Online/Free | 400 | Irregular Blood Vessel, HM, Ex, and MA Detection |
[181] | Kaggle | 433 × 289 to 5184 × 3456 | Different Digital Cameras | Online/Free | 88,702 | Exudate, MA, HMs, and Blood Vessel Detection |
[182] | DIARETDB0 | 1500 × 1152 | Digital Camera with 50° FoV | Online/Free | 130 | HE, SE, MA, HM, and Neovascularization Detection |
[183] | DIARETDB1 | 1500 × 1152 | Digital Camera with 45° FoV | Online/Free | 89 | Irregular Blood Vessel, MA, HM, and Ex Detection |
[10] | IDRiD | 4288 × 2848 | Digital Camera with 45° FoV | Online/Free | 516 | Exudate, MA, HM, and Blood Vessel Detection |
[184] | DR1 and DR2 | 857 × 569 | Digital Camera with 50° FoV | Online/Free | 234 DR1 and 520 DR2 | HE, SE, MA, HM, and Neovascularization Detection |
[185] | CHASE DB1 | 1280 × 960 | Digital Camera with 30° FoV | Online/Free | 28 | Segmentation of Retinal Blood Vessels |
[186] | ROC | 768 × 576 to 1389 × 1383 | Digital Camera with 45° FoV | Online/Free | 100 | MA Detection |
[187] | HRF | 3504 × 2336 | Canon CR-1 Camera | Online/Free | 45 | Retinal Blood Vessel Segmentation |
[188] | HEI-MED | 2196 × 1958 | Zeiss VISUCAM Camera with 45° FoV | Online/Free | 169 | Exudate Detection |
[189] | DRiDB | 720 × 576 | Zeiss VISUCAM Camera with 45° FoV | Online/Free | 50 | Exudate Detection |
Ref # | Year | Methods | Datasets | Results | Limitations |
---|---|---|---|---|---|
[43] | 2022 | Inception-V4, Image Flipping, Image Rotation, SGD | Messidor-2 | 96.10% SP | Using high-resolution and high-quality images at the time of training increases the performance rate. |
[152] | 2022 | DRNet, ResNeX, GAP, FC, FSL | APTOS201 | 98.18% ACC | Imbalanced and small dataset leads to overfitting and poor approximation problems. |
[198] | 2021 | DRNet, CNN, Regression, Image Augmentation, Image Resize, Gaussian Distribution, Euclidean Distance | IDRiD, DRIVE, DRISHTI-GS, RIMONE | 84.50% ACC, 92.10% ACC, 93.30% ACC, 90.10% ACC |
|
[199] | 2021 | CAE, Image Resize, Data Augmentation, ReLU, Skip Connections | DRISHTI-GS, RIM-ONE | 96.70% Dice score, 90.20% Dice score | The availability of a few manually annotated images limits the reliability of supervised learning systems. |
[200] | 2020 | CNN, VGG-16, Softmax, FC Layer, ReLU, Transfer Learning | OCTA | 90.82% SP, 83.76% SF | Large number of datasets and transfer learning approaches are utilized for the training of CNN model to overcome the overfitting problem. |
[201] | 2019 | Vessel Tree Structure, Circular Hough Transform, Sliding Windows, Weighted Colour Channels, Image Augmentation | Local Dataset | 88.80% ACC | The presence of dust particles, reflection, and flash, on the lens of the camera in retinal images, leads to inaccurate results for the detection of OD. |
[202] | 2019 | Inception-V3, CNN, CLAHE, Image Resize, Cropping, Padding | Messidor-2 | 93.49% ACC | Multiclass classification is a challenging task if the patient dataset contains a variety of retinal disorders. |
[190] | 2018 | CNN, SURF, Encoding, Max-Pooling, ILT, BLT, SVM | Messidor, DR1, DR2 | 90% ACC, 93% ACC, 96% ACC | Constructing DL approaches that rely on CNN with a deep architecture means the addition of a great volume of annotated images. |
[46] | 2017 | DLNN, SLDR, GLOH, DColor-SIFT, DFV | DIARETDB1 | 92.18% SF, 94.50% SP | Speech recognition, 3D object recognition, dimensionality reduction, and deep color visual features play a great role in the categorization of DR. |
[125] | 2016 | SeS CNN, NSeS CNN, Circular Template Matching, Image Resize, Image Augmentation, Gaussian Filter | Kaggle, Messidor | 89.40% ACC, 97.20% ACC | It is required to develop innovative data augmentation methods that generate new samples from current samples that accurately reflect real samples. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaukat, N.; Amin, J.; Sharif, M.I.; Sharif, M.I.; Kadry, S.; Sevcik, L. Classification and Segmentation of Diabetic Retinopathy: A Systemic Review. Appl. Sci. 2023, 13, 3108. https://doi.org/10.3390/app13053108
Shaukat N, Amin J, Sharif MI, Sharif MI, Kadry S, Sevcik L. Classification and Segmentation of Diabetic Retinopathy: A Systemic Review. Applied Sciences. 2023; 13(5):3108. https://doi.org/10.3390/app13053108
Chicago/Turabian StyleShaukat, Natasha, Javeria Amin, Muhammad Imran Sharif, Muhammad Irfan Sharif, Seifedine Kadry, and Lukas Sevcik. 2023. "Classification and Segmentation of Diabetic Retinopathy: A Systemic Review" Applied Sciences 13, no. 5: 3108. https://doi.org/10.3390/app13053108
APA StyleShaukat, N., Amin, J., Sharif, M. I., Sharif, M. I., Kadry, S., & Sevcik, L. (2023). Classification and Segmentation of Diabetic Retinopathy: A Systemic Review. Applied Sciences, 13(5), 3108. https://doi.org/10.3390/app13053108