Interval Type-2 Fuzzy-Logic-Based Constant Switching Frequency Control of a Sliding-Mode-Controlled DC–DC Boost Converter
Abstract
:1. Introduction
- (1)
- In this study, a type-2 fuzzy logic controller is employed for switching frequency control, which has never been formulated previously.
- (2)
- By providing both open-loop and closed-loop evaluation of the switching frequency, it is described how the system characteristics impact the switching frequency.
- (3)
- The effectiveness of the suggested surface for system dynamics has been demonstrated by comparing it to various sliding surfaces in the literature.
- (4)
- The results obtained by the proposed controllers and other controllers in the literature are compared, and the efficacy of the proposed methods are validated.
2. Mathematical Analysis of Boost Converter
3. Design of Sliding Mode Controller
4. Interval Type-2 Fuzzy Logic Controller for Constant Switching Frequency
5. Simulation Results
5.1. Selection of Proposed Voltage Control Coefficients
5.2. Comparison with Some Other Sliding Surfaces
5.3. Comparison of the Proposed IT2FS with Another Constant-Switching Frequency Technique
5.4. Comparison with Existing Studies
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Repecho, V.; Biel, D.; Olm, J.M.; Fossas, E. Robust sliding mode control of a DC/DC Boost converter with switching frequency regulation. J. Frankl. Inst. 2018, 355, 5367–5383. [Google Scholar] [CrossRef]
- Nandankar, P.V.; Bedekar, P.P.; Dhawas, P.K.V. Variable switching frequency control for efficient DC-DC converter. Mater. Today Proc. 2022, 51, 515–521. [Google Scholar] [CrossRef]
- Pichan, M.; Arab Markadeh, G.; Blaabjerg, F. Continuous finite-time control of four-leg inverter through fast terminal sliding mode control. Int. Trans. Electr. Energy Syst. 2020, 30, e12355. [Google Scholar] [CrossRef]
- Repecho, V.; Biel, D.; Olm, J.M.; Colet, E.F. Switching frequency regulation in sliding mode control by a hysteresis band controller. IEEE Trans. Power Electron. 2016, 32, 1557–1569. [Google Scholar] [CrossRef] [Green Version]
- Repecho, V.; Biel, D.; Olm, J.M. A Simple Switching-Frequency-Regulated Sliding-Mode Controller for a VSI with a Full Digital Implementation. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 569–579. [Google Scholar] [CrossRef]
- Komurcugil, H. Sliding mode control strategy with maximized existence region for DC–DC buck converters. Int. Trans. Electr. Energy Syst. 2021, 31, e12764. [Google Scholar] [CrossRef]
- Komurcugil, H. Non-singular terminal sliding-mode control of DC–DC buck converters. Control Eng. Pract. 2013, 21, 321–332. [Google Scholar] [CrossRef]
- Yazici, İ.; Yaylaci, E.K. Fast and robust voltage control of DC–DC boost converter by using fast terminal sliding mode controller. IET Power Electron. 2016, 9, 120–125. [Google Scholar] [CrossRef]
- Komurcugil, H. Fast terminal sliding mode control for single-phase UPS inverters. In Proceedings of the 2011 IEEE International Symposium on Industrial Electronics, Gdansk, Poland, 27–30 June 2011; pp. 277–282. [Google Scholar]
- Sen, D.; Saha, T.K.; Dey, J. Sliding mode control of double input buck buck–boost fused converter. Asian J. Control 2022, 24, 845–858. [Google Scholar] [CrossRef]
- Chincholkar, S.H.; Jiang, W.; Chan, C.Y. A modified hysteresis-modulation-based sliding mode control for improved performance in hybrid DC–DC boost converter. IEEE Trans. Circuits Syst. II Express Briefs 2017, 65, 1683–1687. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Yan, Z. Simplified hysteresis sliding-mode control for superbuck converter. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3212–3216. [Google Scholar] [CrossRef]
- Chan, C.Y. Adaptive sliding-mode control of a novel buck-boost converter based on Zeta converter. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 1307–1311. [Google Scholar] [CrossRef]
- Ramos-Paja, C.A.; Montoya, D.G.; Bastidas-Rodríguez, J.D. Sliding-mode control of a CuK converter for voltage regulation of a dc-bus. Sustain. Energy Technol. Assess. 2020, 42, 100807. [Google Scholar] [CrossRef]
- Balta, G.; Güler, N.; Altin, N. Modified Fast Terminal Sliding Mode Control for DC-DC Buck Power Converter with Switching Frequency Regulation. Int. Trans. Electr. Energy Syst. 2022, 2022, 5076611. [Google Scholar] [CrossRef]
- Nizami, T.K.; Chakravarty, A. Neural network integrated adaptive backstepping control of DC-DC boost converter. IFAC-PapersOnLine 2020, 53, 549–554. [Google Scholar] [CrossRef]
- Yang, T.; Liao, Y. Discrete Sliding Mode Control Strategy for Start-Up and Steady-State of Boost Converter. Energies 2019, 12, 2990. [Google Scholar] [CrossRef] [Green Version]
- Guldemir, H. Sliding mode control of DC-DC boost converter. J. Appl. Sci. 2005, 5, 588–592. [Google Scholar] [CrossRef] [Green Version]
- Guldemir, H. Modeling and sliding mode control of dc-dc buck-boost converter. In Proceedings of the 6th International Advanced Technological Symp, Elazığ, Turkey, 16–18 May 2011; Volume 4, pp. 475–480. [Google Scholar]
- Goudarzian, A.; Khosravi, A.; Raeisi, H.A. Optimized sliding mode current controller for power converters with non-minimum phase nature. J. Frankl. Inst. 2019, 356, 8569–8594. [Google Scholar] [CrossRef]
- Canciello, G.; Cavallo, A.; Schiavo, A.L.; Russo, A. Multi-objective adaptive sliding manifold control for More Electric Aircraft. ISA Trans. 2020, 107, 316–328. [Google Scholar] [CrossRef]
- Cavallo, A.; Canciello, G.; Russo, A. Buck-boost converter control for constant power loads in aeronautical applications. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; pp. 6741–6747. [Google Scholar]
- Sharifian, A.; Sasansara, S.F.; Ghadi, M.J.; Ghavidel, S.; Li, L.; Zhang, J. Dynamic performance improvement of an ultra-lift Luo DC–DC converter by using a type-2 fuzzy neural controller. Comput. Electr. Eng. 2018, 69, 171–182. [Google Scholar] [CrossRef]
- Hemeyine, A.V.; Abbou, A.; Bakouri, A.; Mokhlis, M.; El Moustapha, S.M.O.M. A robust interval Type-2 fuzzy logic controller for variable speed wind turbines based on a doubly fed induction generator. Inventions 2021, 6, 21. [Google Scholar] [CrossRef]
- Bennaoui, A.; Saadi, S. Type-2 fuzzy logic PID controller and different uncertainties design for boost DC–DC converters. Electr. Eng. 2017, 99, 203–211. [Google Scholar] [CrossRef]
- Ortiz-Castrillón, J.R.; Mejía-Ruiz, G.E.; Muñoz-Galeano, N.; López-Lezama, J.M.; Cano-Quintero, J.B. A sliding surface for controlling a semi-bridgeless boost converter with power factor correction and adaptive hysteresis band. Appl. Sci. 2021, 11, 1873. [Google Scholar] [CrossRef]
- Irmak, E.; Güler, N. A model predictive control-based hybrid MPPT method for boost converters. Int. J. Electron. 2020, 107, 1–16. [Google Scholar] [CrossRef]
- Deo, R.N.; Shrivastava, A.; Chatterjee, K. Implementation of sliding mode backstepping controller for boost converter in real-time for LED application. Expert Syst. 2022, e13095. [Google Scholar] [CrossRef]
- Şahin, M.E.; Okumuş, H.İ. Parallel-connected buck–boost converter with FLC for hybrid energy system. Electr. Power Components Syst. 2021, 48, 2117–2129. [Google Scholar] [CrossRef]
- Ramos-Paja, C.A.; Montoya, O.D.; Grisales-Noreña, L.F. Adaptive Sliding-Mode Controller for Flyback-Based PV Systems Featuring Constant Switching Frequency. Mathematics 2022, 10, 1255. [Google Scholar] [CrossRef]
- Goudarzian, A.; Khosravi, A.; Raeisi, H.A. A new approach in design of sliding-mode voltage-controller for a SEPIC. Int. J. Dyn. Control 2021, 9, 1197–1209. [Google Scholar] [CrossRef]
Change in Error | Error | ||||
---|---|---|---|---|---|
NB | NS | ZE | PS | PB | |
NB | PB | PB | PS | ZE | NS |
NS | PB | PS | PS | NS | NS |
ZE | PS | PS | ZE | NS | NS |
PS | PS | PS | NS | NS | NB |
PB | PS | ZE | NS | NB | NB |
Description | Parameter | Value |
---|---|---|
Input voltage | E | 12 V |
Filter capacitor | C | 132 μF |
Inductor | L | 20 μH |
Load resistance | R | 20 |
Output voltage reference | 48 V | |
Switching frequency reference | 100 kHz |
Ref | [1] | [19] | [30] | [31] | This Paper |
---|---|---|---|---|---|
Converter type | Boost | Buck-Boost | Flyback | Sepic | Boost |
Control approach | HM-SMC | HM-SMC | HM-SMC | HM-SMC | HM-SMC |
Number of coefficients of S | 3 | 2 | 1 | 1 | 3 |
Switching frequency | Constant | Variable | Slightly Constant | Variable | Constant |
Control type for | SMC | Not Available | Flip-flop | Not | IT2FS Available |
Stability analysis for | Require | Not Covered | Not Needed | Not Covered | Not Needed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balta, G.; Altin, N.; Nasiri, A. Interval Type-2 Fuzzy-Logic-Based Constant Switching Frequency Control of a Sliding-Mode-Controlled DC–DC Boost Converter. Appl. Sci. 2023, 13, 3239. https://doi.org/10.3390/app13053239
Balta G, Altin N, Nasiri A. Interval Type-2 Fuzzy-Logic-Based Constant Switching Frequency Control of a Sliding-Mode-Controlled DC–DC Boost Converter. Applied Sciences. 2023; 13(5):3239. https://doi.org/10.3390/app13053239
Chicago/Turabian StyleBalta, Güven, Necmi Altin, and Adel Nasiri. 2023. "Interval Type-2 Fuzzy-Logic-Based Constant Switching Frequency Control of a Sliding-Mode-Controlled DC–DC Boost Converter" Applied Sciences 13, no. 5: 3239. https://doi.org/10.3390/app13053239
APA StyleBalta, G., Altin, N., & Nasiri, A. (2023). Interval Type-2 Fuzzy-Logic-Based Constant Switching Frequency Control of a Sliding-Mode-Controlled DC–DC Boost Converter. Applied Sciences, 13(5), 3239. https://doi.org/10.3390/app13053239