Anaerobic Digestion of Microalga Chlorella protothecoides and Metagenomic Analysis of Reddish-Colored Digestate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae Pretreatments
2.1.1. Lipid Extraction with Hexane
2.1.2. Enzymatic Pretreatment
2.1.3. Thermal Pretreatment
2.1.4. Ultrasound Pretreatment
2.2. Substrates and Inoculum
2.3. Anaerobic Digestion Experimental Setup
2.4. Analytical Methods
2.5. Optical Microscopy
2.6. Absorbance Spectrometry
2.7. Metagenomic Analysis: Next-Generation Sequencing (NGS) of 16S rRNA Gene Amplicons
3. Results
3.1. Chemical Composition of Substrates and Inoculum after Pretreatment Processes
3.2. Anaerobic Digestion of Microalga Chlorella Protothecoides
3.3. Reddish Pigmentation in AD Units
3.4. Molecular Characterization of Microbial Communities
3.5. Identification of Rhodobacter and Pigments in Anaerobic Digestion of Heterotrophic Algae
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paul, R.; Silkina, A.; Melville, L.; Suhartini, S.; Sulu, M. Optimisation of Ultrasound Pretreatment of Microalgal Biomass for Effective Biogas Production through Anaerobic Digestion Process. Energies 2023, 16, 553. [Google Scholar] [CrossRef]
- O’Connor, S.; Ehimen, E.; Pillai, S.C.; Power, N.; Lyons, G.A.; Bartlett, J. An investigation of the potential adoption of anaerobic digestion for energy production in irish farms. Environment 2021, 8, 8. [Google Scholar] [CrossRef]
- Náthia-Neves, G.; Berni, M.; Dragone, G.; Mussatto, S.I.; Forster-Carneiro, T. Anaerobic digestion process: Technological aspects and recent developments. Int. J. Environ. Sci. Technol. 2018, 15, 2033–2046. [Google Scholar] [CrossRef]
- Santos, C.A.; Nobre, B.; da Silva, T.L.; Pinheiro, H.M.; Reis, A. Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production. J. Biotechnol. 2014, 184, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.A.; Ferreira, M.E.; Lopes da Silva, T.; Gouveia, L.; Novais, J.M.; Reis, A. A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: Taking advantage of complementary nutritional modes. J. Ind. Microbiol. Biotechnol. 2011, 38, 909–917. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jung, J.M.; Jung, S.; Jung, S.; Park, Y.K.; Tsang, Y.F.; Lin, K.Y.A.; Choi, Y.-E.; Kwon, E.E. Biodiesel from microalgae: Recent progress and key challenges. Prog. Energy Combust. Sci. 2022, 93, 101020. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Bassin, I.D.; Cammarota, M.C. Microalgae and Cyanobacteria Biomass Pretreatment Methods: A Comparative Analysis of Chemical and Thermochemical Pretreatment Methods Aimed at Methane Production. Fermentation 2022, 8, 497. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Magalhães, A.I.; Melo Pereira, G.V.; Medeiros, A.B.P.; Sydney, E.B.; Rodrigues, C.; Aulestia, D.T.M.; Vandenberghe, L.P.d.S.; Soccol, V.T.; Soccol, C.R. Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed. Bioresour. Technol. 2020, 300, 122719. [Google Scholar] [CrossRef] [PubMed]
- Sialve, B.; Bernet, N.; Bernard, O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 2009, 27, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Ciccoli, R.; Sperandei, M.; Petrazzuolo, F.; Broglia, M.; Chiarini, L.; Correnti, A.; Farneti, A.; Pignatelli, V.; Tabacchioni, S. Anaerobic digestion of the above ground biomass of Jerusalem Artichoke in a pilot plant: Impact of the preservation method on the biogas yield and microbial community. Biomass Bioenergy 2018, 108, 190–197. [Google Scholar] [CrossRef]
- Eusébio, A.; Neves, A.; Marques, I.P. Complementary substrates-brewery wastewater and piggery effluent—Assessment and microbial community profiling in a hybrid anaerobic reactor. Appl. Sci. 2021, 11, 4364. [Google Scholar] [CrossRef]
- Zhang, L.; Loh, K.C.; Lim, J.W.; Zhang, J. Bioinformatics analysis of metagenomics data of biogas-producing microbial communities in anaerobic digesters: A review. Renew. Sustain. Energy Rev. 2019, 100, 110–126. [Google Scholar] [CrossRef]
- Soares, L.A.; Rabelo, C.A.B.S.; Sakamoto, I.K.; Delforno, T.P.; Silva, E.L.; Varesche, M.B.A. Metagenomic analysis and optimization of hydrogen production from sugarcane bagasse. Biomass Bioenergy 2018, 117, 78–85. [Google Scholar] [CrossRef]
- Oulas, A.; Pavloudi, C.; Polymenakou, P.; Pavlopoulos, G.A.; Papanikolaou, N.; Kotoulas, G.; Arvanitidis, C.; Iliopoulos, L. Metagenomics: Tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinform. Biol. Insights 2015, 9, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Goginyan, V.; Eusébio, A.; Neves, A.; Harutyunyan, B.; Hovhannisyan, R.; Andreasyan, N.; Marques, I.P. Purple non-sulphur photosynthetic bacteria in brewery wastewater during anaerobic digestion. In Proceedings of the 5th International Conference WASTES: Solutions, Treatments and Opportunities, Costa da Caparica, Portugal, 4–6 September 2019; pp. 87–89. [Google Scholar]
- Madigan, M.T.; Jung, D.O. An Overview of Purple Bacteria: Systematics, Physiology, and Habitats. In The Purple Phototrophic Bacteria; Hunter, C.N., Dalda, F., Thurnauer, M.C., Beatty, J.T., Eds.; Springer: Urbana, IL, USA, 2019; Volume 28, pp. 1–15. [Google Scholar]
- Hammam, M.S.; Abdalla, K.Z. Reinforcement of methanogenesis in anaerobic digesters through the application of a purple non-sulfur bacteria bio-augmentation scheme. Int. J. Environ. Sci. Technol. 2019, 16, 8161–8174. [Google Scholar] [CrossRef]
- George, D.M.; Vincent, A.S.; Mackey, H.R. An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable Resource recovery. Biotechnol. Rep. 2020, 28, e00563. [Google Scholar] [CrossRef]
- Li, M.; Xia, Q.; Lv, S.; Tong, J.; Wang, Z.; Nie, Q.; Yang, J. Enhanced CO2 capture for photosynthetic lycopene production in engineered Rhodopseudomonas palustris, a purple nonsulfur bacterium. Green Chem. 2022, 24, 7500–7518. [Google Scholar] [CrossRef]
- Soon, T.K.; Al-Azad, S.; Ransangan, J. Isolation and characterization of purple non-sulfur bacteria, Afifella marina, producing large amount of carotenoids from mangrove microhabitats. J. Microbiol. Biotechnol. 2014, 24, 1034–1043. [Google Scholar] [CrossRef] [Green Version]
- Sakarika, M.; Spanoghe, J.; Sui, Y.; Wambacq, E.; Grunert, O.; Haesaert, G.; Spiller, M.; Vlaeminck, S.E. Purple non-sulphur bacteria and plant production: Benefits for fertilization, stress resistance and the environment. Microb. Biotechnol. 2020, 13, 1336–1365. [Google Scholar] [CrossRef] [Green Version]
- Al-Zuhair, S.; Ashraf, S.; Hisaindee, S.; Darmaki, N.A.; Battah, S.; Svistunenko, D.; Reeder, B.; Stanway, G.; Chaudhary, A. Enzymatic pre-treatment of microalgae cells for enhanced extraction of proteins. Eng. Life Sci. 2017, 17, 175–185. [Google Scholar] [CrossRef] [Green Version]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 20th ed.; APHA-American Wastewater Association: Washington, DC, USA, 2000. [Google Scholar]
- Illumina. Illumina 16S Metagenomics Sequencing Protocol. 2017. Available online: https://emea.support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html. (accessed on 1 December 2019).
- Lee, S.Y.; Cho, J.M.; Chang, Y.K.; Oh, Y.K. Cell disruption and lipid extraction for microalgal biorefineries: A review. Bioresour. Technol. 2017, 244, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Atelge, M.R.; Atabani, A.E.; Banu, J.R.; Krisa, D.; Kaya, M.; Eskicioglu, C.; Kumar, G.; Lee, C.; Yildiz, Y.Ş.; Unalan, S.; et al. A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel 2020, 270, 117494. [Google Scholar] [CrossRef]
- Cho, S.; Park, S.; Seon, J.; Yu, J.; Lee, T. Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresour. Technol. 2013, 143, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Parra, P.; Liu, Y.; Sierra-Alvarez, R.; Field, J.A. Pretreatments to enhance the anaerobic biodegradability of Chlorella protothecoides algal biomass. Environ. Prog. Sustain. Energy 2018, 37, 418–424. [Google Scholar] [CrossRef]
- Passos, F.; Hom-Diaz, A.; Blanquez, P.; Vicent, T.; Ferrer, I. Improving biogas production from microalgae by enzymatic pretreatment. Bioresour. Technol. 2016, 199, 347–351. [Google Scholar] [CrossRef]
- Bohutskyi, P.; Ketter, B.; Chow, S.; Adams, K.J.; Betenbaugh, M.J.; Allnutt, F.T.; Bouwer, E.J. Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery. Bioresour. Technol. 2015, 183, 229–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Günerken, E.; D’Hondt, E.; Eppink, M.H.M.; Garcia-Gonzalez, L.; Elst, K.; Wijffels, R.H. Cell disruption for microalgae biorefineries. Biotechnol. Adv. 2015, 33, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Schwede, S.; Kowalczyk, A.; Gerber, M.; Span, R. Influence of Different Cell Disruption Techniques on Mono Digestion of Algal Biomass. In Proceedings of the World Renewable Energy Congress, Linköping, Sweden, 8–13 May 2011; Volume 57, pp. 41–47. [Google Scholar] [CrossRef] [Green Version]
- Krause, L.; Diaz, N.N.; Edwards, R.A.; Gartemann, K.H.; Krömeke, H.; Neuweger, H.; Pühler, A.; Runte, K.J.; Schlüter, A.; Stoye, J.; et al. Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J. Biotechnol. 2008, 136, 91–101. [Google Scholar] [CrossRef]
- Nelson, M.C.; Morrison, M.; Yu, Z. A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour. Technol. 2011, 102, 3730–3739. [Google Scholar] [CrossRef]
- Schlüter, A.; Bekel, T.; Diaz, N.N.; Dondrup, M.; Eichenlaub, R.; Gartemann, K.H.; Krahn, I.; Krause, L.; Krömeke, H.; Kruse, O.; et al. The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J. Biotechnol. 2008, 136, 77–90. [Google Scholar] [CrossRef]
- Theuerl, S.; Klang, J.; Heiermann, M.; De Vrieze, J. Marker microbiome clusters are determined by operational parameters and specific key taxa combinations in anaerobic digestion. Bioresour. Technol. 2018, 263, 128–135. [Google Scholar] [CrossRef]
- Gannoun, H.; Omri, I.; Chouari, R.; Khelifi, E.; Godon, J.J.; Hamdi, M.; Sghir, A.; Bouallagui, H. Microbial community structure associated with the high loading anaerobic codigestion of olive mill and abattoir wastewaters. Bioresour. Technol. 2016, 201, 337–346. [Google Scholar] [CrossRef]
- Buhlmann, C.H.; Mickan, B.S.; Jenkins, S.N.; Tait, S.; Kahandawala, T.K.A.; Bahri, P.A. Ammonia stress on a resilient mesophilic anaerobic inoculum: Methane production, microbial community, and putative metabolic pathways. Bioresour. Technol. 2019, 27, 70–77. [Google Scholar] [CrossRef]
- Hülsemann, B.; Zhou, L.; Merkle, W.; Hassa, J.; Müller, J.; Oechsner, H. Biomethane potential test: Influence of inoculum and the digestion system. Appl. Sci. 2020, 10, 2589. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Cao, Y.; Yuan, X.; Zhu, W.; Wang, X.; Cui, Z. Microbial diversity in a full-scale anaerobic reactor treating high concentration organic cassava wastewater. Afr. J. Biotechnol. 2012, 11, 6494–6500. [Google Scholar] [CrossRef]
- Guo, W.; Li, Y.; Zhao, K.; Xu, Q.; Jiang, H.; Zhou, H. Performance and Microbial Community Analysis of Anaerobic Digestion of Vinegar Residue with Adding of Acetylene Black or Hydrochar. Waste Biomass Valorization 2020, 11, 3315–3325. [Google Scholar] [CrossRef]
- Goswami, R.; Chattopadhyay, P.; Shome, A.; Banerjee, S.N.; Chakraborty, A.K.; Mathew, A.K.; Chaudhury, S. An overview of physico-chemical mechanisms of biogas production by microbial communities: A step towards sustainable waste management. 3 Biotech 2016, 6, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.K.; Im, W.T.; Kim, D.H.; Kim, M.H.; Shin, H.S.; Oh, S.E. Dry anaerobic digestion of food waste under mesophilic conditions: Performance and methanogenic community analysis. Bioresour. Technol. 2013, 131, 210–217. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X.; Zhou, J.; Yuan, Y.; Dai, Y.; Li, D.; Li, Z.; Liu, X.; Yan, Z. The dynamic changes and interactional networks of prokaryotic community between co-digestion and mono-digestions of corn stalk and pig manure. Bioresour. Technol. 2017, 225, 23–33. [Google Scholar] [CrossRef]
- Wang, P.; Wang, H.; Qiu, Y.; Ren, L.; Jiang, B. Microbial characteristics in anaerobic digestion process of food waste for methane production–A review. Bioresour. Technol. 2018, 248, 29–36. [Google Scholar] [CrossRef]
- Okubo, Y.; Futamata, H.; Hiraishi, A. Characterization of phototrophic purple nonsulfur bacteria forming colored microbial mats in a swine wastewater ditch. Appl. Environ. Microbiol. 2006, 72, 6225–6233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto-Feliciano, K.; Jesús, M.D.; Vega-Sepúlveda, J.; Rios-Velázquez, C. Isolation and characterization of purple non-sulfur anoxyphototropic bacteria from two microecosystems: Tropical hypersaline microbial mats and bromeliads phytotelmata. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2nd ed.; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajos, Spain, 2010; Volume 1, pp. 109–116. ISBN 9788461461950. [Google Scholar]
- Zhang, D.; Yang, H.; Huang, Z.; Zhang, W.; Liu, S.-J. Rhodopseudomonas faecalis sp. nov., a phototrophic bacterium isolated from an anaerobic reactor that digests chicken faeces. Int. J. Syst. Evol. Microbiol. 2002, 52, 2055–2060. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, G.; He, S.; Zhao, R.; Zhu, D. Purple non-sulfur bacteria technology: A promising and potential approach for wastewater treatment and bioresources recovery. World J. Microbiol. Biotechnol. 2021, 37, 161. [Google Scholar] [CrossRef] [PubMed]
- Craven, J.; Sultan, M.A.; Sarma, R.; Wilson, S.; Meeks, N.; Kim, D.Y.; Hastings, J.T.; Bhattacharyya, D. Rhodopseudomonas palustris-based conversion of organic acids to hydrogen using plasmonic nanoparticles and near-infrared light. RSC Adv. 2019, 9, 41218–41227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; Zhang, G.; Dong, S. Quantitative study of PNSB energy metabolism in degrading pollutants under weak light-micro oxygen condition. Bioresour. Technol. 2011, 102, 4968–4973. [Google Scholar] [CrossRef]
Substrate | pH | COD (g/L) | TS (g/L) | VS (g/L) |
---|---|---|---|---|
H | 5.87 | 22.5 ± 0.2 | 8.40 ± 0.1 | 8.0 ± 0.0 |
HExt | 5.76 | 9.70 ± 0.2 | 5.30 ± 0.3 | 5.0 ± 0.3 |
HPEnz | 5.61 | 16.1 ± 0.0 | 7.20 ± 0.1 | 6.9 ± 0.0 |
HPA | 5.63 | 23.4 ± 0.2 | 10.2 ± 0.1 | 9.7 ± 0.1 |
HPU | 6.23 | 23.8 ± 0.0 | 8.80 ± 0.2 | 8.4 ± 0.2 |
AA | 7.04 | 16.4 ± 0.0 | 9.50 ± 0.2 | 7.6 ± 0.0 |
I | – | 17.6 ± 0.4 | 12.5 ± 0.1 | 9.1 ± 0.0 |
Batch Condition | CODin (g/L) | COD Removal (%) | TSin (g/L) | VSin (g/L) | VS Removal (%) | pH Initial | pH Final |
---|---|---|---|---|---|---|---|
H | 32.7 ± 0.0 | 23 | 11.6 ± 0.1 | 10.2 ± 0.1 | 39 | 6.81 | 6.72 |
HExt | 21.3 ± 0.0 | 25 | 11.6 ± 0.3 | 10.1 ± 0.4 | 52 | 7.09 | 6.85 |
HPEnz | 29.1 ± 0.0 | 14 | 10.0 ± 0.0 | 8.60 ± 0.1 | 53 | 6.85 | 6.95 |
HPA | 27.0 ± 0.0 | 53 | 12.1 ± 0.1 | 10.5 ± 0.1 | 35 | 6.98 | 6.80 |
HPU | 26.3 ± 0.0 | 25 | 11.7 ± 0.1 | 10.2 ± 0.1 | 40 | 6.88 | 6.72 |
AA | 32.1 ± 0.0 | 53 | 11.6 ± 0.0 | 9.30 ± 0.0 | 67 | 7.21 | 6.87 |
I | 11.4 ± 0.0 | 43 | 5.10 ± 0.1 | 1.10 ± 0.0 | 7 | 7.38 | 6.99 |
Mixture | Methane Yield | ||
---|---|---|---|
(L CH4/kg CODin) | (L CH4/kg CODr) | (L CH4/kg VSin) | |
H | 56 | 242 | 180 |
HExt | 138 | 550 | 290 |
HPEnz | 61 | 440 | 206 |
HPA | 107 | 418 | 276 |
HPU | 102 | 411 | 263 |
AA | 81 | 153 | 279 |
Day | H | HExt | HPEnz | HPA | HPU | AA | I |
---|---|---|---|---|---|---|---|
1–25 | x | x | x | x | x | x | x |
25–35 | ▲ | x | ■ | ● | ● | x | ■ |
35–50 | ▲ | x | ■ | ● | ● | x | ■ |
Units | Number of Sequences | OTUs | Shannon–Wiener Index | |
---|---|---|---|---|
Bacteria | Archaea | |||
I | 258,364 | 1248 | 8.52 | 2.50 |
H (IN) | 236,493 | 65 | 1.64 | 0.00 |
H (OUT) | 199,089 | 558 | 4.03 | 4.44 |
HPU (IN) | 192,070 | 727 | 3.89 | 2.68 |
HPU (OUT) | 188,969 | 626 | 4.44 | 3.81 |
Total | 1,074,985 | 3224 | - | - |
Units | Relative Abundance (%) | |
---|---|---|
Bacteria | Archaea | |
I | 98.31 | 1.69 |
H (IN) | 100.0 | 0.00 |
H (OUT) | 99.70 | 0.30 |
HPU (IN) | 99.90 | 0.09 |
HPU (OUT) | 99.13 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eusébio, A.; Santos, C.A.; Marques, I.P. Anaerobic Digestion of Microalga Chlorella protothecoides and Metagenomic Analysis of Reddish-Colored Digestate. Appl. Sci. 2023, 13, 3325. https://doi.org/10.3390/app13053325
Eusébio A, Santos CA, Marques IP. Anaerobic Digestion of Microalga Chlorella protothecoides and Metagenomic Analysis of Reddish-Colored Digestate. Applied Sciences. 2023; 13(5):3325. https://doi.org/10.3390/app13053325
Chicago/Turabian StyleEusébio, Ana, Carla A. Santos, and Isabel Paula Marques. 2023. "Anaerobic Digestion of Microalga Chlorella protothecoides and Metagenomic Analysis of Reddish-Colored Digestate" Applied Sciences 13, no. 5: 3325. https://doi.org/10.3390/app13053325
APA StyleEusébio, A., Santos, C. A., & Marques, I. P. (2023). Anaerobic Digestion of Microalga Chlorella protothecoides and Metagenomic Analysis of Reddish-Colored Digestate. Applied Sciences, 13(5), 3325. https://doi.org/10.3390/app13053325