Audio Magnetotelluric and Gravity Investigation of the High-Heat-Generating Granites of Midyan Terrane, Northwest Saudi Arabia
Abstract
:1. Introduction
2. Geological Setting
- Thin sedimentary cover, represented mainly by Wadi fills and eroded materials ranging in depth from 0 to 40 m in the valley’s areas.
- Massive Precambrian granite rocks, from 40 m and decreasing.
3. Material and Methods
3.1. AMT Data
3.2. Gravity Data
4. Results
4.1. AMT Data Analysis
4.2. Gravity Data Analysis
4.3. Interpretations
5. Discussion
6. Conclusions
- This study aimed to investigate high-production granitic rocks in the Midyan Terrane (northwest Saudi Arabia) through a joint analysis of audio magnetotelluric (AMT) and gravity data. A total number of 80 AMT and 246 gravity stations were measured, analyzed, and interpreted. A special emphasis was given to detect the subsurface structural patterns, detect the thicknesses of the sedimentary cover, identify regional deep and shallow fault systems, and clarify the subsurface geometry/extension of the granitic rocks. The main concluded points of this study can be summarized as follows:
- Geophysical AMT and gravity methods were successfully used to image the subsurface structure of the granitic rocks in the study area. These contributed more to the identification of the subsurface orientation and geometry of these granites, and provided the necessary parameters to enhance the further volumetric analysis of the geothermal potential.
- The area had a good geothermal potentiality, represented mainly by high-radioactive granites (EGS) and hot sedimentary basins.
- High-heat granite can be utilized as a good EGS source for possible energy production upon injecting an energy transfer medium such as CO2 (supercritical CO2). However, more detailed geomechanical measurements are required to understand the mechanical behaviors of these granites.
- Near-shore thick sedimentary basins, with a temperature up to 150 °C, are a good candidate for conventional geothermal energy (hydrothermal system). Two important geothermal areas were indicated and mapped; thick sedimentary basins and high-heat granitic rocks.
- Both areas require more exploration activity in order to evaluate the geothermal energy reservoir and estimate its reserves.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amran, Y.A.; Alyousef, R.; Alabduljabbar, H. Renewable and sustainable energy production in Saudi Arabia according to Saudi Vision 2030; Current status and future prospects. J. Clean. Prod. 2020, 247, 119602. [Google Scholar] [CrossRef]
- Tlili, I. Renewable energy in Saudi Arabia: Current status and future potentials. Environ. Dev. Sustain. 2015, 17, 859–886. [Google Scholar] [CrossRef]
- AlYahya, S.; Irfan, M.A. The techno-economic potential of Saudi Arabia’s solar industry. Renew. Sustain. Energy Rev. 2016, 55, 697–702. [Google Scholar] [CrossRef]
- Mosly, I.; Makki, A.A. Current Status and Willingness to Adopt Renewable Energy Technologies in Saudi Arabia. Sustainability 2018, 10, 4269. [Google Scholar] [CrossRef] [Green Version]
- Al Yousif, A. Renewable energy challenges and opportunities in the Kingdom of Saudi Arabia. Int. J. Econ. Financ. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Aboulela, H.; Amin, A.; Lashin, A.; El Rayes, A. Contribution of geothermal resources to the future of renewable energy in Egypt: A case study, Gulf of Suez-Egypt. Renew. Energy 2021, 167, 248–265. [Google Scholar] [CrossRef]
- Boulos, F. Some aspects of the geophysical regime of Egypt in relation to heat flow, ground water and microearthquakes. In The Geology of Egypt; Said, R., Ed.; Routledge: Abingdon, UK, 1990; Chapter 6; pp. 61–89. [Google Scholar]
- Duchane, D.; Brown, D. Hot Dry Rock (HDR) Geothermal Energy Research and Development at Fenton Hill; GHC Bulletin: Los Alamos, NM, USA, 2002; pp. 13–19. [Google Scholar]
- Shyi-Min, L. A global review of enhanced geothermal system (EGS). Renew. Sustain. Energy Rev. 2018, 81, 2902–2921. [Google Scholar]
- Tester, J.W.; Anderson, B.J.; Batchelor, A.S.; Blackwell, D.D.; Di Pippo, R.; Drake, E.M.; Garnish, J.; Livesay, B.; Moore, M.C.; Nichols, K. The Future of Geothermal Energy—Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century; Idaho National Laboratory: Idaho Falls, ID, USA, 2006; ISBN 0-615-13438-6. [Google Scholar]
- Tschirhart, V.; Colpron, M.; Craven, J.; Ghalati, F.H.; Enkin, R.J.; Grasby, S.E. Geothermal Exploration in the Burwash Landing Region, Canada, Using Three-Dimensional Inversion of Passive Electromagnetic Data. Remote Sens. 2022, 14, 5963. [Google Scholar] [CrossRef]
- Zhu, J.; Jin, S.; Yang, Y.; Zhang, T. Geothermal Resource Exploration in Magmatic Rock Areas Using a Comprehensive Geophysical Method. Geofluids 2022, 2022, 5929324. [Google Scholar] [CrossRef]
- Saibi, H.; Khosravi, S.; Cherkose, B.A.; Smirnov, M.; Kebede, Y.; Fowler, A. Magnetotelluric data analysis using 2D inversion: A case study from Al- Mubazzarah Geothermal Area (AMGA), Al-Ain, United Arab Emirates. Heliyon 2021, 7, e07440. [Google Scholar] [CrossRef]
- Guerrero, F.J.; Giovanni, S.C.; Rosa, M.P. A numerical model for the magmatic heat reservoir of the Las Tres Virgenes volcanic complex, Baja California Sur, Mexico. J. Volcanol. Geotherm. Res. 2021, 414, 107–227. [Google Scholar] [CrossRef]
- Malin, P.E.; Onach, S.A.; Shalev, E. A Collaborative Cooperative Constrained Geophysical Imaging Project at Krafla and IDDP: ICEKAP; Duke University: Durham, NC, USA, 2004; pp. 12–26. [Google Scholar]
- Zucchi, M. Faults controlling geothermal fluid flow in low permeability rock volumes: An example from the exhumed geothermal system of eastern Elba Island (northern Tyrrhenian Sea, Italy). Geothermics 2020, 85, 101765. [Google Scholar] [CrossRef]
- Hacıoğlu, Ö.; Başokur, A.T.; Diner, Ç. Geothermal potential of the eastern end of the Gediz basin, western Anatolia, Turkey revealed by three-dimensional inversion of magnetotelluric data. Geothermics 2021, 91, 102040. [Google Scholar] [CrossRef]
- Roy, K.K. Potential Theory in Applied Geophysics; Springer: Berlin/Heidelberg, Germany, 2008; 671p. [Google Scholar]
- Árnason, K.; Eysteinsson, H.; Hersir, G.P. Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland. Geothermics 2010, 39, 13–34. [Google Scholar] [CrossRef]
- Kaieda, H.; Suzuki, S. Geophysical exploration for Hot Dry Rock geothermal energy development at Cooper Basin, Australia. Butsuri Transa 2014, 67, 277–285. [Google Scholar]
- He, R.; Zeng, Z.; Zhao, X.; Du, W.; Huo, Z.; Song, E. Interpretation of gravity data to delineate underground structure in the Gonghe geothermal field, China. In Proceedings of the International Geophysical Conference, Qingdao, China, 17–20 April 2017; pp. 1–4. [Google Scholar]
- Zhao, J.; Zeng, Z.; Zhou, S.; Yan, J.; An, B. 3-D Inversion of Gravity Data of the Central and Eastern Gonghe Basin for Geothermal Exploration. Energies 2023, 16, 2277. [Google Scholar] [CrossRef]
- Hussein, M.T.; Lashin, A.; Al Bassam, A.; Al Arifi, N.; Al Zahrani, I. Geothermal power potential at the western coastal part of Saudi Arabia. Renew. Sustain. Energy Rev. 2013, 26, 668–684. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekharam, D.; Lashin, A.; Al Arifi, N. Meeting future energy demand of Saudi Arabia through high heat generating granites. Int. J. Earth Sci. Eng. 2014, 7, 1–4. [Google Scholar]
- Lashin, A.; Al Arifi, N. Geothermal energy potential of southwestern of Saudi Arabia “exploration and possible power generation”: A case study at Al Khouba area—Jizan. Renew. Sustain. Energy Rev. 2014, 30, 771–789. [Google Scholar] [CrossRef]
- Lashin, A.; Pipan, M.; Al Arifi, N.; Al Bassam, A. Geophysical exploration of the western Saudi Arabian geothermal province: First results from the Al-Lith area. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–25 April 2015; pp. 1–9. [Google Scholar]
- Lashin, A.; Chandrasekharam, D.; Al Bassam, A.; Al Arifi, N.; Rehman, S. A review of the Geothermal Resources of Saudi Arabia: 2015–2020. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–25 April 2015; pp. 1–12. [Google Scholar]
- Chandrasekharam, D.; Lashin, A.; Al Arifi, N.; Al Bassam, A.; El Alfy, M.; Ranjith, P.; Varun, C.; Singh, H. The potential of high heat generating granites as EGS source to generate power and reduce CO2 emissions, western Arabian shield, Saudi Arabia. J. Afr. Earth Sci. 2016, 112, 213–233. [Google Scholar] [CrossRef]
- Aboud, E.; Qaddah, A.; Harbi, H.; Alqahtani, F. Geothermal resources database in Saudi Arabia (GRDiSA): GIS model and geothermal favorability map. Arab. J. Geosci. 2021, 14, 112. [Google Scholar] [CrossRef]
- Zaidi, F.K.; Lashin, A.; Aboud, E.; Al Arifi, N.; Al-Bassam, A.; Al-Homadhi, E.; Abu Anbar, M. Silica geothermometry and multi indices approach to characterize groundwater from Midyan region in North-western Saudi Arabia. J. Afr. Earth Sci. 2022, 192, 104557. [Google Scholar] [CrossRef]
- Stern, R.J. ARC assembly and continental collision in the Neoproterozoic East African Orogen: Implications for the Consolidation of Gondwanaland. Annu. Rev. Earth Planet. Sci. 1994, 22, 319–351. [Google Scholar] [CrossRef]
- Stern, R.J.; Johnson, P. Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis. Earth-Sci. Rev. 2010, 101, 29–67. [Google Scholar] [CrossRef]
- Radain, A.A.M.; Fyfe, W.S.; Kerrich, R. Origin of peralkaline granites of Saudi Arabia. Contrib. Miner. Pet. 1981, 78, 358–366. [Google Scholar] [CrossRef]
- Stoeser, D.B.; Camp, E. Pan-African microplate accretion of the Arabian shield. Geol. Soc. Am. Bull. 1985, 96, 817–826. [Google Scholar] [CrossRef]
- Alfotawi, B.; Gazzaz, M.; Hassan, M. Uranium and Thorium Enrichment in Haql Granite in Midyan Region Northwest of Saudi Arabia. J. King Abdulaziz Univ. Sci. 1991, 4, 161–170. [Google Scholar] [CrossRef]
- Laboun, A.A. Did glaciers exist during Pleistocene in the Midyan region, northwest corner of the Arabian Peninsula? Arab. J. Geosci. 2012, 5, 1333–1339. [Google Scholar] [CrossRef]
- Tulinius, H.; Ádám, L.; Halldórsdóttir, H.; Yu, G.; Strack, K.; Allegar, N.; He, L.F.; He, Z.X. Exploring for geothermal reservoirs using broadband 2-D MT and gravity in Hungary. In SEG Technical Program Expanded Abstracts 2008; Society of Exploration Geophysicists: Houston, TX, USA, 2008; pp. 1147–1151. [Google Scholar]
- Daud, Y.; Sudarman, S.; Ushijima, K. Integrated geophysical studies of the Ulubelu geothermal filed, south Sumatera, Indonesia. In Proceedings of the World Geothermal Congress 2000, Kyushu-Tohoku, Japan, 28 May–10 June 2000. [Google Scholar]
- Santos, P.A.; Rivas, J.A. Gravity Surveys Contribution to Geothermal Exploration in El Salvador: The Cases of Berlin, Ahua Achapan and San Vicente Areas; UNU-GTP-LaGeo: San Salvador, El Salvador, 2009; pp. 1–4. [Google Scholar]
- KMS Technology. KMS Pro Software, AMT Data Analysis Software; KMS Technologies GmbH: Dresden, Germany, 2015. [Google Scholar]
- Schlumberger Software; V. 2.21.08; WinGlink: A Geophysical Interpretation Software; Schlumberger: Houston, TX, USA, 2014.
- Rodi, W.; Mackie, R.L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversions. Geophysics 2001, 66, 174–187. [Google Scholar] [CrossRef]
- Gupta, V.K.; Ramani, N. Some aspects of regional residual separation of gravity anomalies in a Precambrian terrain. Geophysics 1980, 45, 1412–1426. [Google Scholar] [CrossRef]
- Hammer, S. Deep gravity interpretation by stripping. Geophysics 1963, 28, 369–378. [Google Scholar] [CrossRef]
- Gitonga, G. Geothermal power plants for medium and high temperature steam and an overview of wellhead power plants. In Short Course II on Exploration and Development of Geothermal Resources; UNU-GTP and KenGen: Naivasha, Kenya, 2018; pp. 1–7. [Google Scholar]
- MEWA. Study of groundwater natural radioactive contamination phenomena. Geophys. Well Logs Inf. 2014, 10, 19–20. [Google Scholar]
- Tubbs, R.E., Jr.; Fouda, G.A.H.; Afifi, A.M.; Raterman, N.S.; Hughes, G.W.; Fadolalkarem, Y.K. Midyan Peninsula, northern Red Sea, Saudi Arabia: Seismic imaging and regional interpretation. GeoArabia 2014, 19, 165–184. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aboud, E.; Lashin, A.; Zaidi, F.; Al-Bassam, A.; Al Arifi, N.; Abu Anbar, M.; Al-Homadhi, E. Audio Magnetotelluric and Gravity Investigation of the High-Heat-Generating Granites of Midyan Terrane, Northwest Saudi Arabia. Appl. Sci. 2023, 13, 3429. https://doi.org/10.3390/app13063429
Aboud E, Lashin A, Zaidi F, Al-Bassam A, Al Arifi N, Abu Anbar M, Al-Homadhi E. Audio Magnetotelluric and Gravity Investigation of the High-Heat-Generating Granites of Midyan Terrane, Northwest Saudi Arabia. Applied Sciences. 2023; 13(6):3429. https://doi.org/10.3390/app13063429
Chicago/Turabian StyleAboud, Essam, Aref Lashin, Faisal Zaidi, Abdulaziz Al-Bassam, Nassir Al Arifi, Mohamed Abu Anbar, and Emad Al-Homadhi. 2023. "Audio Magnetotelluric and Gravity Investigation of the High-Heat-Generating Granites of Midyan Terrane, Northwest Saudi Arabia" Applied Sciences 13, no. 6: 3429. https://doi.org/10.3390/app13063429
APA StyleAboud, E., Lashin, A., Zaidi, F., Al-Bassam, A., Al Arifi, N., Abu Anbar, M., & Al-Homadhi, E. (2023). Audio Magnetotelluric and Gravity Investigation of the High-Heat-Generating Granites of Midyan Terrane, Northwest Saudi Arabia. Applied Sciences, 13(6), 3429. https://doi.org/10.3390/app13063429