Large Scale Optical Assisted Mm-Wave Beam-Hopping System for Multi-Hop Bent-Pipe LEO Satellite Networks
Abstract
:1. Introduction
2. Multi-Hop Bent-Pipe LEO Satellite Constellation
2.1. Multi-Hop Bent-Pipe Beam-Hopping Payload Architecture
- Saving regenerative processing loads between satellites, making satellites lighter and lower-power;
- Makes it simple to upgrade and alter satellite payload;
- Integrate beam-hopping into satellite network routing algorithms to achieve more flexible inter-satellite routing reconfiguration.
2.2. Antenna Design Challenge for Beam-Hopping
3. Optical Controlled Phased Sub-Array in Multi-Hop Bent-Pipe Payload
3.1. Optically Controlled Beam Steering
3.2. Broadband Phased-Array Aperture Effect
4. Experiment and Results
4.1. Overcome the Aperture Effect
4.2. Wavelength Control Beam-Hopping and Fine Steering
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, X.; Rommer, S.; Euler, S.; Yavuz, E.A.; Karlsson, R.S. 5G from space: An overview of 3GPP non-terrestrial networks. IEEE Commun. Stand. Mag. 2021, 5, 147–153. [Google Scholar] [CrossRef]
- Cluzel, S.; Franck, L.; Radzik, J.; Cazalens, S.; Dervin, M.; Baudoin, C.; Dragomirescu, D. 3GPP NB-IoT coverage extension using LEO satellites. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [Google Scholar]
- Chen, S.; Sun, S.; Kang, S. System integration of terrestrial mobile communication and satellite communication—The trends, challenges and key technologies in B5G and 6G. China Commun. 2020, 17, 156–171. [Google Scholar] [CrossRef]
- Elbert, B.R. Introduction to Satellite Communication; Artech House: Norwood, MA, USA, 2008. [Google Scholar]
- Morales-Ferre, R.; Richter, P.; Falletti, E.; de la Fuente, A.; Lohan, E.S. A survey on coping with intentional interference in satellite navigation for manned and unmanned aircraft. IEEE Commun. Surv. Tutorials 2019, 22, 249–291. [Google Scholar] [CrossRef]
- Guo, K.; An, K.; Zhang, B.; Huang, Y.; Guo, D.; Zheng, G.; Chatzinotas, S. On the performance of the uplink satellite multiterrestrial relay networks with hardware impairments and interference. IEEE Syst. J. 2019, 13, 2297–2308. [Google Scholar] [CrossRef]
- He, G.; Gao, X.; Sun, L.; Zhang, R. A Review of Multibeam Phased Array Antennas as LEO Satellite Constellation Ground Station. IEEE Access 2021, 9, 147142–147154. [Google Scholar] [CrossRef]
- Xia, S.; Jiang, Q.; Zou, C.; Li, G. Beam coverage comparison of LEO satellite systems based on user diversification. IEEE Access 2019, 7, 181656–181667. [Google Scholar] [CrossRef]
- Yagli, A.F.; Gokten, M.; Kuzu, L.; Ertok, H.H.; Gulgonul, S. An antenna array for Ku band satellite reception. In Proceedings of the 2015 31st International Review of Progress in Applied Computational Electromagnetics (ACES), Williamsburg, VA, USA, 22–26 March 2015; pp. 1–2. [Google Scholar]
- Gokten, M.; Kuzu, L.; Yagli, A.F.; Gulgonul, S.; Demircioglu, E. A planar Ku band antenna for satellite communications. In Proceedings of the 2016 IEEE//ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES), Honolulu, HI, USA, 13–18 March 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Y.; Li, S.; Liao, S.; Xue, Q. Dual-band dual circularly polarized antenna array using FSS-integrated polarization rotation AMC ground for vehicle satellite communications. IEEE Trans. Veh. Technol. 2019, 68, 10742–10751. [Google Scholar] [CrossRef]
- Borel, T.T.S.; Yadav, A.R.; Shah, U. Design of rectangular patch array antenna for satellite communication. In Proceedings of the 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, Indiapp, 27–29 March 2019; pp. 759–764. [Google Scholar]
- Litinskaya, Y.A.; Polenga, S.V.; Stankovsky, A.V.; Hudonogova, A.D.; Salomatov, Y.P. A Subarray for Ku-Band High-Gain Scanning Antenna Based on CTS Waveguide. In Proceedings of the 2019 Radiation and Scattering of Electromagnetic Waves (RSEMW), Divnomorskoe, Russia, 24–28 June 2019; pp. 285–288. [Google Scholar]
- ETSI. EN 302 307-2 V1.3.1; Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications. Part 2: DVB-S2 Extensions (DVB-S2X); ESTI: Sophia Antipolis, France, 2021.
- Xiao, M.; Zhu, J.; Li, G.; Li, N.; Li, S.; Cano, Z.P.; Ma, L.; Cui, P.; Xu, P.; Jiang, G. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem. Int. Ed. 2019, 58, 9640–9645. [Google Scholar] [CrossRef]
- Pachler, N.; del Portillo, I.; Crawley, E.F.; Cameron, B.G. An updated comparison of four low earth orbit satellite constellation systems to provide global broadband. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC workshops), Montreal, QC, Canada, 14–23 June 2021; pp. 1–7. [Google Scholar]
- Neinavaie, M.; Kassas, Z.M. Unveiling Beamforming Strategies of Starlink LEO Satellites. In Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Long Beach, CA, USA, 25–27 January 2022; pp. 2525–2531. [Google Scholar]
- Zong, P.; Kohani, S. Design of LEO Constellations with Inter-satellite Connects Based on the Performance Evaluation of the Three Constellations SpaceX, OneWeb and Telesat. Korean J. Remote Sens. 2021, 37, 23–40. [Google Scholar]
- Frigyes, I.; Seeds, A. Optically generated true-time delay in phased-array antennas. IEEE Trans. Microw. Theory Tech. 1995, 43, 2378–2386. [Google Scholar] [CrossRef]
- Lee, H.; Jeon, H.B.; Jung, J.W. Optical true time-delay beam-forming for phased array antenna using a dispersion compensating fiber and a multi-wavelength laser. In Proceedings of the 2011 4th Annual Caneus Fly by Wireless Workshop, Montréal, QC, Canada, 14–17 June 2011; pp. 1–4. [Google Scholar]
- Li, J. Optically Steerable Phased Array Enabling Technology Based on Mesogenic Azobenzene Liquid Crystals for Starlink Towards 6G. In Proceedings of the 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, China, 8–11 December 2020; pp. 345–347. [Google Scholar]
- Xu, X.; Wu, J.; Nguyen, T.G.; Shoeiby, M.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; Moss, D.J. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt. Express 2018, 26, 2569–2583. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, C.; Chen, C.; Wu, T.; Huang, H.; Qiu, K. Optical true time delay pools based centralized beamforming control for wireless base stations phased-array antennas. J. Light. Technol. 2018, 36, 3693–3699. [Google Scholar] [CrossRef]
- Tsokos, C.; Mylonas, E.; Groumas, P.; Gounaridis, L.; Avramopoulos, H.; Kouloumentas, C. Optical beamforming network for multi-beam operation with continuous angle selection. IEEE Photonics Technol. Lett. 2018, 31, 177–180. [Google Scholar] [CrossRef]
- Vidal, B.; Corral, J.L.; Piqueras, M.A.; Marti, J. Optical delay line based on arrayed waveguide gratings’ spectral periodicity and dispersive media for antenna beamforming applications. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 1202–1210. [Google Scholar] [CrossRef]
- Polo, V.; Vidal, B.; Corral, J.; Marti, J. Novel tunable photonic microwave filter based on laser arrays and N/spl times/N AWG-based delay lines. IEEE Photonics Technol. Lett. 2003, 15, 584–586. [Google Scholar] [CrossRef]
- Srivastava, R.; Singh, Y.N. Feedback fiber delay lines and AWG based optical packet switch architecture. Opt. Switch. Netw. 2010, 7, 75–84. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, Q.; Smolders, A.B.; Jiao, Y.; Wale, M.J.; Oh, C.W.; Wu, H.; Koonen, A.M.J. Advanced Integration Techniques on Broadband Millimeter-Wave Beam Steering for 5G Wireless Networks and Beyond. IEEE J. Quantum Electron. 2016, 52, 1–20. [Google Scholar] [CrossRef]
- Cao, Z.; Zhao, X.; Soares, F.; Tessema, N.; Koonen, A. 38-GHz millimeter wave beam steered fiber wireless systems for 5G indoor coverage: Architectures, devices, and links. IEEE J. Quantum Electron. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- Liu, J.; Long, M.; Zhong, X.; Zhou, T.; Qu, P.; Xiao, Y.; Chen, Z.; Leng, J.; Wu, Z. A photonic beamformer based on integrated optical delay line. In Proceedings of the Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, Kunming, China, 9–11 November 2021; Volume 11763, pp. 2074–2078. [Google Scholar]
- Cao, Z.; Tessema, N.M.; Latkowski, S.; Zhao, X.; Chen, Z.; Moskalenko, V.; Williams, K.A.; van der Boom, H.P.A.; Tangdiongga, E.; Koonen, A.M.J. Integrated remotely tunable optical delay line for millimeter-wave beam steering fabricated in an InP generic foundry. Opt. Lett. 2015, 40 17, 3930–3933. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, M.; Jiao, Y.; Cao, Z.; Koonen, A. Integrated wavelength-tuned optical mm-wave beamformer with doubled delay resolution. J. Light. Technol. 2020, 38, 2353–2359. [Google Scholar] [CrossRef]
- Chaudhary, S.; Chaudhary, N.; Sharma, S.; Choudhary, B. High speed inter-satellite communication system by incorporating hybrid polarization-wavelength division multiplexing scheme. J. Opt. Commun. 2018, 39, 87–92. [Google Scholar] [CrossRef]
- Sun, X.; Cao, S. A routing and wavelength assignment algorithm based on two types of LEO constellations in optical satellite networks. J. Light. Technol. 2020, 38, 2106–2113. [Google Scholar] [CrossRef]
- Wen, G.; Zhang, Q.; Wang, H.; Tian, Q.; Tao, Y. An ant colony algorithm based on cross-layer design for routing and wavelength assignment in optical satellite networks. China Commun. 2017, 14, 63–75. [Google Scholar] [CrossRef]
- Sun, X.; Cao, S. Wavelength routing assignment of different topological optical networks based on typical LEO satellite constellations. In Proceedings of the International Conference on Wireless and Satellite Systems, Harbin, China, 12–13 January 2019; pp. 612–629. [Google Scholar]
- FCC. FCC Application Listing SATLOA2016111500118. Available online: https://fcc.report/IBFS/SAT-LOA-20161115-00118 (accessed on 29 March 2018).
- FCC. FCC Application Listing SAT-MPL-20200526-00062. Available online: https://fcc.report/IBFS/SAT-MPL-20200526-00062 (accessed on 16 September 2022).
- FCC. FCC Application Listing SAT-MPL-SAT-MPL-20200526-00053. Available online: https://fcc.report/IBFS/SAT-MPL-20200526-00053 (accessed on 15 July 2022).
- Fryer, T. Small satellites offer hope of true world-wide broadband. Eng. Technol. 2022, 17, 82–87. [Google Scholar] [CrossRef]
- Liu, W.; Weiss, S. Wideband Beamforming: Concepts and Techniques; John Wiley & Sons: New York, NY, USA, 2010. [Google Scholar]
- Zhao, M.; Xia, S.; Zhang, X.; Yang, L.; Xiang, Y.; Cao, Z. Photonic Radio Frequency Orbital Angular Momentum Generation and Beam Steering. J. Light. Technol. 2022. [Google Scholar] [CrossRef]
- Garakoui, S.K.; Klumperink, E.A.; Nauta, B.; van Vliet, F.E. Phased-array antenna beam squinting related to frequency dependency of delay circuits. In Proceedings of the 2011 41st European Microwave Conference, Manchester, UK, 10–13 October 2011; pp. 1304–1307. [Google Scholar]
- Xiang, C.; Davenport, M.L.; Khurgin, J.B.; Morton, P.A.; Bowers, J.E. Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Khalil, M.; Dong, W.; Gasulla, I.; Capmany, J.; Chen, L.R. On-chip optical true time delay lines based on subwavelength grating waveguides. Opt. Lett. 2021, 46, 1405–1408. [Google Scholar] [CrossRef]
- Zhu, C.; Lu, L.; Shan, W.; Xu, W.; Zhou, G.; Zhou, L.; Chen, J. Silicon integrated microwave photonic beamformer. Optica 2020, 7, 1162–1170. [Google Scholar] [CrossRef]
- Xue, X.; Xuan, Y.; Bao, C.; Li, S.; Zheng, X.; Zhou, B.; Qi, M.; Weiner, A.M. Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control. J. Light. Technol. 2018, 36, 2312–2321. [Google Scholar] [CrossRef] [Green Version]
Example | No. Beam | Angle | Beam Width | Antenna Type |
---|---|---|---|---|
Starlink | 16 | 56.55° | 1.3° | Phase array |
OneWeb | 16 | 40° | TX:3°; RX:2° | Phase array |
Telesat | 16 | 45° | 1.55° | Phase array |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, S.; Liu, P.; Zhao, M.; Zou, C.; Shao, F.; Jin, J.; Wang, H.; Li, G. Large Scale Optical Assisted Mm-Wave Beam-Hopping System for Multi-Hop Bent-Pipe LEO Satellite Networks. Appl. Sci. 2023, 13, 3480. https://doi.org/10.3390/app13063480
Xia S, Liu P, Zhao M, Zou C, Shao F, Jin J, Wang H, Li G. Large Scale Optical Assisted Mm-Wave Beam-Hopping System for Multi-Hop Bent-Pipe LEO Satellite Networks. Applied Sciences. 2023; 13(6):3480. https://doi.org/10.3390/app13063480
Chicago/Turabian StyleXia, Shiyi, Peilong Liu, Mingyang Zhao, Cheng Zou, Fengwei Shao, Jifeng Jin, Haiwang Wang, and Guotong Li. 2023. "Large Scale Optical Assisted Mm-Wave Beam-Hopping System for Multi-Hop Bent-Pipe LEO Satellite Networks" Applied Sciences 13, no. 6: 3480. https://doi.org/10.3390/app13063480
APA StyleXia, S., Liu, P., Zhao, M., Zou, C., Shao, F., Jin, J., Wang, H., & Li, G. (2023). Large Scale Optical Assisted Mm-Wave Beam-Hopping System for Multi-Hop Bent-Pipe LEO Satellite Networks. Applied Sciences, 13(6), 3480. https://doi.org/10.3390/app13063480