A Siphon Drainage Method for Consolidation of Soft Soil Foundation
Abstract
:1. Introduction
2. Theoretical Basis of Siphon Drainage in Soft Soil Consolidation
3. Numerical Simulation of Feasibility of Siphon Drainage in Soft Soil Consolidation
3.1. Numerical Models
3.2. Results and Discussion
3.2.1. Vertical Pore Pressure
3.2.2. Pore Water Pressure at the Depth of 10 m from the Corner of Square Column
3.2.3. Pore Water Pressure at the Depth of 20 m from the Corner of Square Column
4. Field Test of Siphon Drainage in Soft Soil Consolidation
4.1. Engineering Geological Condition
4.2. Field Test in Zhoushan
4.3. Changes of Groundwater Level during the Siphon Drainage
4.3.1. Changes of Groundwater Level in Siphon Drainage Holes
4.3.2. Changes of Groundwater Level in Normal Holes
4.4. Subsidence of Soil during Siphon Drainage
4.4.1. Subsidence on Soil Surface
4.4.2. Subsidence in the Vertical
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Bared, M.A.M.; Marto, A. A review on the geotechnical and engineering characteristics of marine clay and the modern methods of improvements. Malays. J. Fundam. Appl. Sci. 2017, 13, 825–831. [Google Scholar] [CrossRef] [Green Version]
- Consoli, N.C.; Winter, D.; Rilho, A.S.; Festugato, L.; Teixeira, B.D.S. A testing procedure for predicting strength in artificially cemented soft soils. Eng. Geol. 2015, 195, 327–334. [Google Scholar] [CrossRef]
- Leung, Y.; Klar, A.; Soga, K.; Hoult, N. Superstructure–foundation interaction in multi-objective pile group optimization considering settlement response. Can. Geotech. J. 2017, 54, 1408–1420. [Google Scholar] [CrossRef] [Green Version]
- Mangushev, R.A.; Usmanov, R.A. Artificial beds with the installation of highly compacted cushions on weak saturated loess soils. Soil Mech. Found. Eng. 2009, 46, 45–52. [Google Scholar] [CrossRef]
- Lee, D.; An, Y.; Kwak, T.; Lee, H.; Choi, H. Nonlinear Finite-Strain Self-Weight Consolidation of Dredged Material with Radial Drainage Using Carrillo’s Formula. J. Waterw. Port. Coastal Ocean Eng. 2016, 142, 06016002. [Google Scholar] [CrossRef]
- Mafra, V.; Dienstmann, G. Cavity expansion solutions applied to help assess the partial drainage behavior characterization of the pie-zocone test. Comput. Geotech. 2023, 152, 105017. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Lei, H.; Zheng, G.; Jin, Y. Ground Improvement of Dredged Fills with Two Improved Vacuum Preloading Methods: Case Study. J. Geotech. Geoenviron. Eng. 2022, 148, 05022008. [Google Scholar] [CrossRef]
- Heo, Y.; Bae, W. A Statistical Evaluation of Consolidation Properties of Marine Clay in South Korea. Mar. Georesour. Geotechnol. 2013, 31, 209–224. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, K.-H.; Jamin, J.C.; Mission, J.L.C. Stochastic cost optimization of ground improvement with prefabricated vertical drains and surcharge preloading. Géoméch. Eng. 2015, 7, 525–537. [Google Scholar] [CrossRef]
- Kim, Y.T.; Nguyen, B.-P.; Yun, D.-H. Analysis of consolidation behavior of PVD-improved ground considering a varied discharge capacity. Eng. Comput. 2018, 35, 1183–1202. [Google Scholar] [CrossRef]
- Bhosle, S.; Deshmukh, V. Experimental studies on soft marine clay under combined vacuum and surcharge preloading with PVD. Int. J. Geotech. Eng. 2021, 15, 461–470. [Google Scholar] [CrossRef]
- Shams, M.A.; Shahin, M.A.; Ismail, M.A. Numerical analysis of slab foundations on reactive soils incorporating sand cushions. Comput. Geotech. 2019, 112, 218–229. [Google Scholar] [CrossRef]
- Ponomarev, A.B.; Tat’yannikov, D.A. Analysis of the Performance of Sand Cushions Reinforced with Horizontal Geosynthetic Ele-ments. Soil Mech. Found. Eng. 2020, 56, 371–377. [Google Scholar] [CrossRef]
- Fattah, M.Y.; Zabar, B.S.; Hassan, H.A. Soil arching analysis in embankments on soft clays reinforced by stone columns. Struct. Eng. Mech. 2015, 56, 507–534. [Google Scholar] [CrossRef]
- Nguyen, B.-P.; Yun, D.-H.; Kim, Y.-T. An equivalent plane strain model of PVD-improved soft deposit. Comput. Geotech. 2018, 103, 32–42. [Google Scholar] [CrossRef]
- Mamat, R.C.; Ramli, A.; Khahro, S.H.; Yusoff, N.I.M. Numerical Simulation and Field Measurement Validation of Road Embank-ment on Soft Ground Improved by Prefabricated Vertical Drains: A Comparative Study. Appl. Sci. 2022, 12, 8097. [Google Scholar] [CrossRef]
- Preene, M.; Roberts, T.O.L. Construction dewatering in Chalk. Proc. Inst. Civ. Eng.-Geotech. Eng. 2017, 170, 367–390. [Google Scholar] [CrossRef]
- William, C.; Harry, B.; Nightingale, I. Fresno, California, Subsurface Drain Collector-Deep Well Recharge System. J. Am. Water Work. Assoc. 1978, 70, 427–435. [Google Scholar]
- Huang, F.; Lyu, J.; Wang, G.; Liu, H. One-Dimensional Vacuum Steady Seepage Model of Unsaturated Soil and Finite Difference Solution. Math. Probl. Eng. 2017, 2017, 9589638. [Google Scholar] [CrossRef] [Green Version]
- Boatwright, A.; Hughes, S.; Barry, J. The height limit of a siphon. Sci. Rep. 2015, 5, 46792. [Google Scholar] [CrossRef] [Green Version]
- Lv, C.; Wang, D.; Shuai, F.; Sun, H.; Shang, Y.; Ackers, J.C.; Ervine, D.; Oliver, G.; Perkins, J.; Kenn, M.; et al. A three-dimensional numerical method for siphon drainage process simulation. Proc. Inst. Civ. Eng.-Geotech. Eng. 2021, 175, 631–646. [Google Scholar] [CrossRef]
- Yu, Y.; Lv, C.; Wang, D.; Ge, Q.; Sun, H.; Shang, Y. A siphon drainage method for stabilizing bank slopes under water drawdown condition. Nat. Hazards 2021, 105, 2263–2282. [Google Scholar] [CrossRef]
- Gress, J.C. Device for Draining Soils in Depth. U.S. Patent US4717284A, 5 January 1988. [Google Scholar]
- Gress, J.C. Device for Regulating the Flow in a Drainage Siphon Tube. U.S. Patent US5035535A, 30 July 1991. [Google Scholar]
- Sun, H.-Y.; Ge, Q.; Yu, Y.; Shuai, F.-X.; Lü, C.-C. A new self-starting drainage method for slope stabilization and its application. Bull. Eng. Geol. Environ. 2020, 80, 251–265. [Google Scholar] [CrossRef]
- Sun, H.-Y.; Shuai, F.-X.; Wang, D.-F.; Lv, C.-C.; Shang, Y.-Q. Vacuum formation and negative pressure transmission under a self-starting drainage process. Q. J. Eng. Geol. Hydrogeol. 2021, 54, qjegh2019-129. [Google Scholar] [CrossRef]
- Sun, H.; Wu, G.; Liang, X.; Yan, X.; Wang, D.; Wei, Z. Laboratory modeling of siphon drainage combined with surcharge loading consolidation for soft ground treatment. Mar. Georesour. Geotechnol. 2018, 36, 940–949. [Google Scholar] [CrossRef]
- Wu, G.; Xie, W.; Sun, H.; Yan, X.; Tang, B. Consolidation behaviour with and without siphon drainage. Proc. Inst. Civ. Eng.-Geotech. Eng. 2018, 171, 377–378. [Google Scholar] [CrossRef]
- Sun, H.-Y.; Wang, D.-F.; Shang, Y.-Q.; Cai, Y.-L.; Wei, Z.-L. An improved siphon drainage method for slope stabilization. J. Mt. Sci. 2019, 16, 701–713. [Google Scholar] [CrossRef]
- Sun, H.-Y.; Wu, X.; Wang, D.-F.; Xu, H.-D.; Liang, X.; Shang, Y.-Q. Analysis of deformation mechanism of landslide in complex geological conditions. Bull. Eng. Geol. Environ. 2019, 78, 4311–4323. [Google Scholar] [CrossRef]
Soil | Moisture Content (%) | Wet Density (g/cm3) | Dry Density (g/cm3) | PORE RATIO | Plastic Index | Vertical Permeability Coefficient (cm/s) | Horizontal Permeability Coefficient (cm/s) | Compressibility a1–2 (MPa−1) |
---|---|---|---|---|---|---|---|---|
stamped soil | 38.9 | 1.81 | 1.31 | 1.13 | 16.2 | 4.2 × 10−7 | 5.78 × 10−7 | 0.95 |
gray-yellow silty clay | 40.5 | 1.78 | 1.27 | 1.15 | 14.7 | 2.2 × 10−7 | 1.6 × 10−7 | 1.08 |
gray silty clay | 41.3 | 1.78 | 1.26 | 1.17 | 15.1 | 2.2 × 10−7 | 1.7 × 10−7 | 0.87 |
silty clay | 29.7 | 1.92 | 1.5 | 0.83 | 14.5 | 1.1 × 10−7 | 4.8 × 10−7 | 0.39 |
Soil Layers | Moisture Content (%) | Wet Density (g/cm3) | Dry Density (g/cm3) | Pore Ratio | Plastic Index | Vertical Permeability Coefficient (cm/s) | Horizontal Permeability Coefficient (cm/s) | Compressibility a1–2 (MPa−1) |
---|---|---|---|---|---|---|---|---|
1 | 46.1 | 1.74 | 1.19 | 1.284 | 14.0 | 0.83 | ||
2 | 41.7 | 1.78 | 1.26 | 1.165 | 13.6 | 4.21 × 10−7 | 5.78 × 10−7 | 0.95 |
3 | 43.6 | 1.77 | 1.23 | 1.215 | 14.7 | 0.97 | ||
4 | 50.5 | 1.70 | 1.13 | 1.417 | 14.1 | 3.90 × 10−7 | 6.30 × 10−7 | 1.21 |
5 | 48.3 | 1.71 | 1.15 | 1.368 | 15.5 | 1.06 | ||
6 | 43.8 | 1.77 | 1.23 | 1.210 | 13.9 | 0.73 | ||
7 | 54.1 | 1.66 | 1.08 | 1.544 | 18.2 | 1.69 × 10−7 | 2.54 × 10−7 | 0.13 |
8 | 48.2 | 1.72 | 1.16 | 1.361 | 17.5 | 1.18 | ||
9 | 48.1 | 1.72 | 1.16 | 1.359 | 17.6 | 2.50 × 10−7 | 3.93 × 10−7 | 0.82 |
10 | 46.4 | 1.74 | 1.19 | 1.314 | 20.3 | 1.06 | ||
11 | 57.8 | 1.63 | 1.03 | 1.653 | 17.4 | 1.71 × 10−7 | 2.49 × 10−7 | 1.07 |
Days | Magnetic Ring | ||||||
---|---|---|---|---|---|---|---|
01 | 02 | 03 | 04 | 05 | 06 | 07 | |
24 December 2021 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
28 December 2021 | −19 | −19 | −17 | −15 | −8 | 1 | 10 |
30 December 2021 | −33 | −34 | −31 | −22 | −17 | −1 | 12 |
3 January 2022 | −81 | −85 | −82 | −71 | −59 | −35 | −15 |
7 January 2022 | −117 | −123 | −119 | −102 | −88 | −60 | −33 |
9 January 2022 | −148 | −152 | −148 | −125 | −111 | −77 | −48 |
12 January 2022 | −158 | −161 | −157 | −131 | −119 | −80 | −51 |
15 January 2022 | −198 | −200 | −189 | −158 | −142 | −102 | −68 |
18 January 2022 | −236 | −232 | −219 | −187 | −169 | −123 | −88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Shen, Q.; Yuan, S.; Wang, X.; Shu, J.; Zheng, J.; Sun, H. A Siphon Drainage Method for Consolidation of Soft Soil Foundation. Appl. Sci. 2023, 13, 3633. https://doi.org/10.3390/app13063633
Wang J, Shen Q, Yuan S, Wang X, Shu J, Zheng J, Sun H. A Siphon Drainage Method for Consolidation of Soft Soil Foundation. Applied Sciences. 2023; 13(6):3633. https://doi.org/10.3390/app13063633
Chicago/Turabian StyleWang, Jun, Qingsong Shen, Shuai Yuan, Xiaohong Wang, Junwei Shu, Jun Zheng, and Hongyue Sun. 2023. "A Siphon Drainage Method for Consolidation of Soft Soil Foundation" Applied Sciences 13, no. 6: 3633. https://doi.org/10.3390/app13063633
APA StyleWang, J., Shen, Q., Yuan, S., Wang, X., Shu, J., Zheng, J., & Sun, H. (2023). A Siphon Drainage Method for Consolidation of Soft Soil Foundation. Applied Sciences, 13(6), 3633. https://doi.org/10.3390/app13063633