Apportioning Human-Induced and Climate-Induced Land Degradation: A Case of the Greater Sekhukhune District Municipality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. NDVI Dataset
2.2.2. Rainfall Dataset
2.2.3. Land Use and Land Cover and Change Dataset
2.3. Data Analysis
2.3.1. Regression Analysis
2.3.2. Mann–Kendall Non-Parametric Trend Analysis Applied on RESTREND
3. Results
3.1. NDVI and Rainfall MK Trends
3.1.1. NDVI MK Trends
3.1.2. Rainfall MK Trends
3.2. Land Use and Land Cover NDVI MK Trends
3.3. RESTREND Analysis
4. Discussion
4.1. Trends of Vegetation Production and Rainfall
4.2. Vegetation Trends on LULC Classes and Impacts of LULC Changes on Vegetation
4.3. Land Degradation Due to Human Activities or Effects of Rainfall: RESTREND Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neil Adger, W. Scales of Governance and Environmental Justice for Adaptation and Mitigation of Climate Change. J. Int. Dev. 2001, 13, 921–931. [Google Scholar] [CrossRef]
- Le, Q.B.; Tamene, L.; Vlek, P.L.G. Multi-Pronged Assessment of Land Degradation in West Africa to Assess the Importance of Atmospheric Fertilization in Masking the Processes Involved. Glob. Planet. Chang. 2012, 92–93, 71–81. [Google Scholar] [CrossRef]
- Weldemariam, G.S. Application of DPSIR Framework for Assessment ofLand Degradation: A Review. Approaches Poult. Dairy Vet. Sci. 2017, 1, 88–94. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Maestre, F.T.; Kemp, P.R.; Stafford-Smith, D.M.; Lambin, E. Natural and Human Dimensions of Land Degradation in Drylands: Causes and Consequences. In Terrestrial Ecosystems in a Changing World; Canadell, J.G., Pataki, D.E., Pitelka, L.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 247–257. [Google Scholar] [CrossRef]
- Duan, H.; Yan, C.; Tsunekawa, A.; Song, X.; Li, S.; Xie, J. Assessing Vegetation Dynamics in the Three-North Shelter Forest Region of China Using AVHRR NDVI Data. Environ. Earth Sci. 2011, 64, 1011–1020. [Google Scholar] [CrossRef]
- Yu, Q.Y.; Wu, W.B.; Liu, Z.H.; Verburg, P.H.; Xia, T.; Yang, P.; Lu, Z.J.; You, L.Z.; Tang, H.J. Interpretation of Climate Change and Agricultural Adaptations by Local Household Farmers: A Case Study at Bin County, Northeast China. J. Integr. Agric. 2014, 13, 1599–1608. [Google Scholar] [CrossRef]
- Mbow, C.; Smith, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving Mitigation and Adaptation to Climate Change through Sustainable Agroforestry Practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; VanZyl, D. Can Human-Induced Land Degradation Be Distinguished from the Effects of Rainfall Variability? A Case Study in South Africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- Prince, S.D.; Brown De Colstoun, E.; Kravitz, L.L. Evidence from Rain-Use Efficiencies Does Not Indicate Extensive Sahelian Desertification. Glob. Chang. Biol. 1998, 4, 359–374. [Google Scholar] [CrossRef]
- Anyamba, A.; Tucker, C.J. Analysis of Sahelian Vegetation Dynamics Using NOAA-AVHRR NDVI Data from 1981–2003. J. Arid Environ. 2005, 63, 596–614. [Google Scholar] [CrossRef]
- Hoffman, T.M.; Todd, S. A National Review of Land Degradation in South Africa: The Influence of Biophysical and Socio-Economic Factors. J. South Afr. Stud. 2000, 26, 743–758. [Google Scholar] [CrossRef]
- The Greater Sekhukhune District. FINAL IDP 2016–2021 01-07-2016; 2019. Available online: http://www.sekhukhunedistrict.gov.za/?q=idp_budget (accessed on 3 February 2020).
- Ward, D.; Timm Hoffman, M.; Collocott, S.J. A Century of Woody Plant Encroachment in the Dry Kimberley Savanna of South Africa. Afr. J. Range Forage Sci. 2014, 31, 107–121. [Google Scholar] [CrossRef]
- Stephens, G.J.; Johnston, D.B.; Jonas, J.L.; Paschke, M.W. Understory Responses to Mechanical Treatment of Pinyon-Juniper in Northwestern Colorado. Rangel. Ecol. Manag. 2016, 69, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Graw, V.; Oldenburg, C.; Dubovyk, O. Bush Encroachment Mapping for Africa: Multi-Scale Analysis with Remote Sensing and GIS, ZEF-Discussion Papers on Development Policy No. 218. ZEF-Center for Development Research, University of Bonn: Bonn, Germany, 2016; Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2807811 (accessed on 20 February 2022).
- Ramoelo, A.; Stolter, C.; Joubert, D.; Cho, M.A.; Groengroeft, A.; Madibela, O.R.; Zimmermann, I.; Pringle, H. Rangeland Monitoring and Assessment: A Review. Biodivers. Ecol. 2018, 6, 170–176. [Google Scholar] [CrossRef]
- Mpandeli, S.; Nesamvuni, E.; Maponya, P. Adapting to the Impacts of Drought by Smallholder Farmers in Sekhukhune District in Limpopo Province, South Africa. J. Agric. Sci. 2015, 7, 115–124. [Google Scholar] [CrossRef]
- Caturegli, L.; Gaetani, M.; Volterrani, M.; Magni, S.; Minelli, A.; Baldi, A.; Brandani, G.; Mancini, M.; Lenzi, A.; Orlandini, S.; et al. Normalized Difference Vegetation Index versus Dark Green Colour Index to Estimate Nitrogen Status on Bermudagrass Hybrid and Tall Fescue. Int. J. Remote Sens. 2020, 41, 455–470. [Google Scholar] [CrossRef]
- de Jong, R.; de Bruin, S.; Schaepman, M.; Dent, D. Quantitative Mapping of Global Land Degradation Using Earth Observations. Int. J. Remote Sens. 2011, 32, 6823–6853. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Kong, J. Assessing Land Degradation Dynamics and Distinguishing Human-Induced Changes from Climate Factors in the Three-North Shelter Forest Region of China. ISPRS Int. J. Geo-Inf. 2016, 5, 158. [Google Scholar] [CrossRef] [Green Version]
- Huber, S.; Fensholt, R.; Rasmussen, K. Water Availability as the Driver of Vegetation Dynamics in the African Sahel from 1982 to 2007. Glob. Planet. Chang. 2011, 76, 186–195. [Google Scholar] [CrossRef]
- Martiny, N.; Camberlin, P.; Richard, Y.; Philippon, N. Compared Regimes of NDVI and Rainfall in Semi-Arid Regions of Africa. Int. J. Remote Sens. 2006, 27, 5201–5223. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, H.; Qiu, L.; Cao, S.; He, Y.; Pang, G. Spatial and Temporal Analyses of Vegetation Changes at Multiple Time Scales in the Qilian Mountains. Remote Sens. 2021, 13, 5046. [Google Scholar] [CrossRef]
- Ibrahim, H.; Elfaig, A.; Mokhtar, J.; Egemi, O.; Abdelkreim, M. Land Use/Land Cover Change Detection In Semi-Arid Lands: A Study From Sudan-Ghubaysh Area: A GIS And Remote Sensing Perspective. Int. J. Sci. Technol. Res. 2015, 4, 5. [Google Scholar]
- Lupo, F.; Reginster, I.; Lambin, E.F. Monitoring Land-Cover Changes in West Africa with Spot Vegetation: Impact of Natural Disasters in 1998-1999. Int. J. Remote Sens. 2001, 22, 2633–2639. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhang, C.X.; Hasi, E.; Dong, Z.B. Has the Three Norths Forest Shelterbelt Program Solved the Desertification and Dust Storm Problems in Arid and Semiarid China? J. Arid Environ. 2010, 74, 13–22. [Google Scholar] [CrossRef]
- Li, A.; Wu, J.; Huang, J. Distinguishing between Human-Induced and Climate-Driven Vegetation Changes: A Critical Application of RESTREND in Inner Mongolia. Landsc. Ecol. 2012, 27, 969–982. [Google Scholar] [CrossRef]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-Based Vegetation Dynamics and Its Response to Climate Changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent Trends in Vegetation Dynamics in the African Sahel and Their Relationship to Climate. Glob. Environ. Chang. 2005, 15, 394–404. [Google Scholar] [CrossRef]
- Berdimbetov, T.; Ma, Z.G.; Shelton, S.; Ilyas, S.; Nietullaeva, S. Identifying Land Degradation and Its Driving Factors in the Aral Sea Basin From 1982 to 2015. Front. Earth Sci. 2021, 9, 1–20. [Google Scholar] [CrossRef]
- Helldén, U.; Tottrup, C. Regional Desertification: A Global Synthesis. Glob. Planet. Chang. 2008, 64, 169–176. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between Climate and Human-Induced Dryland Degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Statistics South Africa, (STATS SA), Community Survery 2016 Provincial Profile: Limpopo, 2016. Statistics South Africa. Available online: http://cs2016.statssa.gov.za/?portfolio_page=community-survey-2016-provincial-profile-limpopo-2016 (accessed on 7 April 2021).
- Stronkhorst, J.; Levering, A.; Hendriksen, G.; Rangel-Buitrago, N.; Appelquist, L.R. Regional Coastal Erosion Assessment Based on Global Open Access Data: A Case Study for Colombia. J. Coast. Conserv. 2018, 22, 787–798. [Google Scholar] [CrossRef] [Green Version]
- Gourmelon, V.; Maggia, L.; Powell, J.R.; Gigante, S.; Hortal, S.; Gueunier, C.; Letellier, K.; Carriconde, F. Environmental and Geographical Factors Structure Soil Microbial Diversity in New Caledonian Ultramafic Substrates: A Metagenomic Approach. PLoS ONE 2016, 11, e0167405. [Google Scholar] [CrossRef] [Green Version]
- The Greater Sekhukhune District Municipality. Final 2021–2026 IDP SC03-05-21 10 June 2021. 2020. Available online: https://www.sekhukhunedistrict.gov.za/?q=idp_budget (accessed on 3 February 2020).
- Mucina, L.; Hoffman, T.; Ashwell, A. Book Review. South Afr. J. Bot. 2003, 69, 116. [Google Scholar] [CrossRef] [Green Version]
- Kalisa, W.; Igbawua, T.; Henchiri, M.; Ali, S.; Zhang, S.; Bai, Y.; Zhang, J. Assessment of Climate Impact on Vegetation Dynamics over East Africa from 1982 to 2015. Sci. Rep. 2019, 9, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Bao, G.; Qin, Z.; Bao, Y.; Zhou, Y.; Li, W.; Sanjjav, A. NDVI-Based Long-Term Vegetation Dynamics and Its Response to Climatic Change in the Mongolian Plateau. Remote Sens. 2014, 6, 8337–8358. [Google Scholar] [CrossRef] [Green Version]
- Salim, H.A.; XiaoLing, C.; JianYa, G. Analysis of Sudan Vegetation Dynamics Using NOAA-AVHRR NDVI Data from 1982-1993. Asian J. Earth Sci. 2009, 2, 71–85. [Google Scholar] [CrossRef]
- Muavhi, N.; Woyessa, Y. A Simple Approach for Monitoring Vegetation Change Using Time Series Remote Sensing Analysis: A Case Study from the Thathe Vondo Area in Limpopo Province, South Africa. S. Afr. J. Sci. 2021, 117, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Franch, B.; Vermote, E.F.; Roger, J.C.; Murphy, E.; Becker-reshef, I.; Justice, C.; Claverie, M.; Nagol, J.; Csiszar, I.; Meyer, D.; et al. A 30+ Year AVHRR Land Surface Reflectance Climate Data Record and Its Application to Wheat Yield Monitoring. Remote Sens. 2017, 9, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archer, E.R.M. Beyond the “Climate versus Grazing” Impasse: Using Remote Sensing to Investigate the Effects of Grazing System Choice on Vegetation Cover in the Eastern Karoo. J. Arid Environ. 2004, 57, 381–408. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Yang, W.; Wang, L.; Wu, M.; Zhang, Q.; Han, W.; Khoi, D.N. The Relationship between NDVI and Climate Factors at Different Monthly Time Scales: A Case Study of Grasslands in Inner Mongolia, China (1982–2015). Sustainability 2019, 11, 7243. [Google Scholar] [CrossRef] [Green Version]
- Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Aggarwal, S.P.; Netzband, M.; Fazal, S. Monitoring Urban Sprawl Using Remote Sensing and GIS Techniques of a Fast Growing Urban Centre, India. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 56–64. [Google Scholar] [CrossRef]
- Sarti, M.; Vaccari, F.P.; Calfapietra, C.; Brugnoli, E.; Scartazza, A. A Statistical Approach to Detect Land Cover Changes in Mediterranean Ecosystems Using Multi-Temporal Landsat Data: The Case Study of Pianosa Island, Italy. Forests 2020, 11, 334. [Google Scholar] [CrossRef] [Green Version]
- Department of Rural Development and Land Reform (DRDLR). Standard_for_the_ Land_Cover_Mapping_ QLAS_SD. 19(V2); 2019. Available online: http://www.ngi.gov.za/index.php/technical-information/standards-menu?download=4:standard-for-the-land-cover-mapping (accessed on 20 January 2020).
- Ganasri, B.P.; Dwarakish, G.S. Study of Land Use/Land Cover Dynamics through Classification Algorithms for Harangi Catchment Area, Karnataka State, INDIA. Aquat. Procedia 2015, 4, 1413–1420. [Google Scholar] [CrossRef]
- Foody, G.M. Spatial Nonstationarity and Scale-Dependency in the Relationship between Species Richness and Environmental Determinants for the Sub-Saharan Endemic Avifauna. Glob. Ecol. Biogeogr. 2004, 13, 315–320. [Google Scholar] [CrossRef]
- Montfort, F.; Bégué, A.; Leroux, L.; Blanc, L.; Gond, V.; Cambule, A.H.; Remane, I.A.D.; Grinand, C. From Land Productivity Trends to Land Degradation Assessment in Mozambique: Effects of Climate, Human Activities and Stakeholder Definitions. L. Degrad. Dev. 2021, 32, 49–65. [Google Scholar] [CrossRef]
- Adarsh, S.; Janga Reddy, M. Trend Analysis of Rainfall in Four Meteorological Subdivisions of Southern India Using Nonparametric Methods and Discrete Wavelet Transforms. Int. J. Climatol. 2015, 35, 1107–1124. [Google Scholar] [CrossRef]
- Udelhoven, T.; Stellmes, M.; del Barrio, G.; Hill, J. Assessment of Rainfall and NDVI Anomalies in Spain (1989–1999) Using Distributed Lag Models. Int. J. Remote Sens. 2009, 30, 1961–1976. [Google Scholar] [CrossRef]
- Baniya, B.; Tang, Q.; Huang, Z.; Sun, S.; Techato, K. Spatial and Temporal Variation of NDVI in Response to Climate Change and the Implication for Carbon Dynamics in Nepal. Forests 2018, 9, 329. [Google Scholar] [CrossRef] [Green Version]
- Saha, M.V.; Scanlon, T.M.; Odorico, P.D. Examining the Linkage between Shrub Encroachment and Recent Greening in Water-Limited Southern Africa. Ecosphere 2015, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wigley, B.J.; Bond, W.J.; Hoffman, M.T. Bush Encroachment under Three Contrasting Land-Use Practices in a Mesic South African Savanna. Afr. J. Ecol. 2009, 47 (Suppl. S1), 62–70. [Google Scholar] [CrossRef]
- Mukwada, G.; Mazibuko, S.M.; Moeletsi, M.; Robinson, G.M. Can Famine Be Averted? A Spatiotemporal Assessment of the Impact of Climate Change on Food Security in the Luvuvhu River Catchment of South Africa. Land 2021, 10, 527. [Google Scholar] [CrossRef]
- Chen, X.; Vierling, L.; Deering, D. A Simple and Effective Radiometric Correction Method to Improve Landscape Change Detection across Sensors and across Time. Remote Sens. Environ. 2005, 98, 63–79. [Google Scholar] [CrossRef]
- Mpandeli, S.; Maponya, P. Constraints and Challenges Facing the Small Scale Farmers in Limpopo Province, South Africa. J. Agric. Sci. 2014, 6, 135. [Google Scholar] [CrossRef] [Green Version]
- Vogel, C.; Van Zyl, K. Drought: In Search of Sustainable Solutions to a Persistent, ‘Wicked’ Problem in South Africa. In Climate Change Adaptation Strategies—An Upstream-Downstream Perspective; Springer: Cham, Switzerland, 2016; pp. 195–211. [Google Scholar] [CrossRef]
- Dagnachew, M.; Kebede, A.; Moges, A.; Abebe, A. Effects of Climate Variability on Normalized Difference Vegetation Index (NDVI) in the Gojeb River Catchment, Omo-Gibe Basin, Ethiopia. Adv. Meteorol. 2020, 2020, 8263246. [Google Scholar] [CrossRef]
- He, C.; Tian, J.; Gao, B.; Zhao, Y. Differentiating Climate- and Human-Induced Drivers of Grassland Degradation in the Liao River Basin, China. Environ. Monit. Assess. 2015, 187, 4199. [Google Scholar] [CrossRef] [PubMed]
LCC Level | Class Name | Description |
---|---|---|
1 | Thicket/Dense bush | Bush land, dense shrubs |
1 | Shrub and grassland | Perennial grass, sparse trees, impoverished woodlands, very sparsely distributed, low-lying shrub species |
1 | Bare/Exposed rock | Bare, exposed areas and transitional areas |
1 | Mines and Quarries | Areas in which mining activities has been conducted. This includes both opencast mines and queries, surface infrastructure, mine dumps |
1 | Residential | Built-up areas used for residential (town or villages), commercial and services, and transportation. |
2 | Subsistence Cultivation | Rainfed, annual crops for local markets and/or home use. Small field units, often in dense local or regional clusters |
2 | Commercial cultivation | Cultivated lands used primarily to produce rainfed, annual crops or primarily to produce centre pivot/non-pivot irrigated for commercial markets. Typically represented by large field units, often in dense local or regional clusters. |
3 | Eroded land | Non-vegetated donga and gully features, typically associated with significant natural or man-induced erosion activities along or in association with stream and flow lines. The mapped extent of the dongas and gullies is represented by bare ground conditions in all, or the majority of the multi-date Landsat images used in the land-cover modelling. |
NDVI TREND | Slope (Magnitude) | Significant Trend | Insignificant Trend | ||||
---|---|---|---|---|---|---|---|
Positive | Negative | Stable | Significant Negative (Degraded) | Significant Positive (Improved) | Insignificant Negative (Degraded) | Insignificant Positive (Improved) | |
Number of 5 km pixels | 260 | 222 | 1 | 3 | 0 | 219 | 259 |
Proportion Statistics (%) | 53.83 | 45.96 | 0.21 | 0.62 | 0 | 45.34 | 53.62 |
Land Use and Cover Type | Kendal’s Tau | Sen’s Slope | p-Value |
---|---|---|---|
Bare/Exposed rock | 0.11 | 0.0006 | 0.42 |
Shrub/Grassland | −0.049 | −0.0003 | 0.72 |
Thicket/Dense bush | 0.11 | 0.0006 | 0.42 |
Eroded Land | 0.03 | 0.0002 | 0.84 |
Subsistence Cultivation | 0.044 | −0.0004 | 0.75 |
Commercial Cultivation | −0.13 | −0.0013 | 0.32 |
Residential Area | −0.034 | −0.0003 | 0.81 |
Industrial Land | 0.15 | 0.0011 | 0.26 |
Rank | From Class Name | To Class Name | Period | Season | Area (Ha) |
---|---|---|---|---|---|
1 | Shrub/grassland | Bare soil/exposed rock | 2015–2019 | Dry | 129,255.85 |
2 | Thicket/dense bush | Shrub/grassland | 2010–2015 | Wet | 110,625.63 |
3 | Shrub/grassland | Bare soil/exposed rock | 2010–2015 | Wet | 109,736.63 |
4 | Shrub/grassland | Bare soil/exposed rock | 1995–1999 | Dry | 92,186.56 |
5 | Shrub/grassland | Eroded Land | 2005–2010 | Dry | 79,494.00 |
6 | Thicket/dense bush | Bare soil/exposed rock | 1990–1995 | Dry | 76,749.93 |
7 | Eroded Land | Shrub/grassland | 2015–2019 | Dry | 74,632.24 |
8 | Residential | Shrub/grassland | 2005–2010 | Wet | 73,953.02 |
9 | Bare soil/exposed rock | Shrub/grassland | 2015–2019 | Dry | 71,890.83 |
10 | Bare soil/exposed rock | Shrub/grassland | 2010–2015 | Wet | 70,188.57 |
11 | Bare soil/exposed rock | Shrub/grassland | 2005–2010 | Wet | 69,619.38 |
12 | Bare soil/exposed rock | Shrub/grassland | 1990–1995 | Dry | 69,079.58 |
13 | Shrub/grassland | Bare soil/exposed rock | 2005–2010 | Wet | 65,193.11 |
14 | Shrub/grassland | Residential | 1995–1999 | Dry | 64,465.42 |
MK NDVI RESTREND | Residual Trend Slope (Magnitude) | Significance of Residual Trend (Vegetation Trends Explained by Human Activities) | Insignificance of Residual Trend (Vegetation Trends Explained by Rainfall) | ||||
---|---|---|---|---|---|---|---|
Positive | Negative | Stable | Significant Negative (Degraded) | Significant Positive | Insignificant Negative (Degraded) | Insignificant Positive | |
Pixel Numbers (8 km) | 198 | 256 | 56 | 56 | 46 | 200 | 180 |
Proportion Statistics (%) | 40.99 | 53.00 | 6.01 | 11.59 | 9.52 | 41.41 | 37.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kgaphola, M.J.; Ramoelo, A.; Odindi, J.; Mwenge Kahinda, J.-M.; Seetal, A. Apportioning Human-Induced and Climate-Induced Land Degradation: A Case of the Greater Sekhukhune District Municipality. Appl. Sci. 2023, 13, 3644. https://doi.org/10.3390/app13063644
Kgaphola MJ, Ramoelo A, Odindi J, Mwenge Kahinda J-M, Seetal A. Apportioning Human-Induced and Climate-Induced Land Degradation: A Case of the Greater Sekhukhune District Municipality. Applied Sciences. 2023; 13(6):3644. https://doi.org/10.3390/app13063644
Chicago/Turabian StyleKgaphola, Motsoko Juniet, Abel Ramoelo, John Odindi, Jean-Marc Mwenge Kahinda, and Ashwin Seetal. 2023. "Apportioning Human-Induced and Climate-Induced Land Degradation: A Case of the Greater Sekhukhune District Municipality" Applied Sciences 13, no. 6: 3644. https://doi.org/10.3390/app13063644
APA StyleKgaphola, M. J., Ramoelo, A., Odindi, J., Mwenge Kahinda, J. -M., & Seetal, A. (2023). Apportioning Human-Induced and Climate-Induced Land Degradation: A Case of the Greater Sekhukhune District Municipality. Applied Sciences, 13(6), 3644. https://doi.org/10.3390/app13063644