Aloysia citrodora Extracts Cultivated in Greece as Antioxidants and Potent Regulators of Food Microbiota
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Plant Material
2.2. Preparation of Plant Extracts
2.3. Analytical Procedures
2.3.1. Chemical Analysis
2.3.2. Determination of Total Phenolic Content
2.4. Biological Evaluation
2.4.1. Microbial Strains
2.4.2. Growth Stimulatory Activity
2.4.3. Prebiotic Index
2.4.4. Osmotic Stress Tolerance Assay
2.4.5. Bile Salt Tolerance Assay
2.4.6. Thermal Stress Assay
2.4.7. Alcohol Tolerance
2.4.8. Antimicrobial Assays
2.4.9. Antioxidant Activity: DPPH-Radical Scavenging Activity
2.5. Statistical Analysis
3. Results and Discussion
3.1. Plant Extracts Preparation
3.2. Phytochemical Analysis
3.3. Determination of Total Phenolic Content
3.4. Growth Stimulatory Activity
3.5. Antimicrobial Activity against Spoilage and Foodborne Pathogenic Bacteria
3.6. Antioxidant Activity: DPPH-Radical Scavenging Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation; Food and Agriculture Organization of the United Nations; World Health Organization (Eds.) FAO food and nutrition paper; Food and Agriculture Organization of the United Nations/World Health Organization: Italy, Rome, 2006; ISBN 978-92-5-105513-7. [Google Scholar]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and Prebiotics in Intestinal Health and Disease: From Biology to the Clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.A.K.; Sarker, M.; Li, T.; Yin, J. Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Res. Int. 2018, 2018, e9478630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aarti, C.; Martina, C.; Khusro, A. Antimycobacterium, Anticancer, and Antiviral Properties of Probiotics: An Overview. Microbes Infect. Dis. 2021, 2, 662–671. [Google Scholar] [CrossRef]
- Milutinović, M.; Dimitrijević-Branković, S.; Rajilić-Stojanović, M. Plant Extracts Rich in Polyphenols as Potent Modulators in the Growth of Probiotic and Pathogenic Intestinal Microorganisms. Front. Nutr. 2021, 8, 688843. [Google Scholar] [CrossRef]
- Ziarno, M.; Kozłowska, M.; Ścibisz, I.; Kowalczyk, M.; Pawelec, S.; Stochmal, A.; Szleszyński, B. The Effect of Selected Herbal Extracts on Lactic Acid Bacteria Activity. Appl. Sci. 2021, 11, 3898. [Google Scholar] [CrossRef]
- Trejo Rodríguez, I.S.; Alcántara Quintana, L.E.; Algara Suarez, P.; Ruiz Cabrera, M.A.; Grajales Lagunes, A. Physicochemical Properties, Antioxidant Capacity, Prebiotic Activity and Anticancer Potential in Human Cells of Jackfruit (Artocarpus heterophyllus) Seed Flour. Molecules 2021, 26, 4854. [Google Scholar] [CrossRef]
- De Giani, A.; Oldani, M.; Forcella, M.; Lasagni, M.; Fusi, P.; Di Gennaro, P. Synergistic Antioxidant Effect of Prebiotic Ginseng Berries Extract and Probiotic Strains on Healthy and Tumoral Colorectal Cell Lines. Int. J. Mol. Sci. 2022, 24, 373. [Google Scholar] [CrossRef]
- Oukerrou, M.A.; Tilaoui, M.; Mouse, H.A.; Leouifoudi, I.; Jaafari, A.; Zyad, A. Chemical Composition and Cytotoxic and Antibacterial Activities of the Essential Oil of Aloysia citriodora Palau Grown in Morocco. Adv. Pharmacol. Pharm. Sci. 2017, 2017, e7801924. [Google Scholar] [CrossRef] [Green Version]
- Oulahal, N.; Degraeve, P. Phenolic-Rich Plant Extracts with Antimicrobial Activity: An Alternative to Food Preservatives and Biocides? Front. Microbiol. 2022, 12, 753518. [Google Scholar] [CrossRef]
- Bahramsoltani, R.; Rostamiasrabadi, P.; Shahpiri, Z.; Marques, A.M.; Rahimi, R.; Farzaei, M.H. Aloysia Citrodora Paláu (Lemon Verbena): A Review of Phytochemistry and Pharmacology. J. Ethnopharmacol. 2018, 222, 34–51. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Arzani, A. Essential Oil Composition, Total Phenolic, Flavonoid Contents, and Antioxidant Activity of Thymus Species Collected from Different Regions of Iran. Food Chem. 2017, 220, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Tammar, S.; Salem, N.; Aidi Wannes, W.; Limam, H.; Bourgou, S.; Fares, N.; Dakhlaoui, S.; Hammami, M.; Khammassi, S.; Re, G.D.; et al. Chemometric Profiling and Bioactivity of Verbena (Aloysia citrodora) Methanolic Extract from Four Localities in Tunisia. Foods 2021, 10, 2912. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.C.T.; Figueira, G.M.; Sartoratto, A.; Rehder, V.L.G.; Delarmelina, C. Anti-Candida Activity of Brazilian Medicinal Plants. J. Ethnopharmacol. 2005, 97, 305–311. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Mousavi Khaneghah, A.; Koubaa, M.; Barba, F.J.; Abedi, E.; Niakousari, M.; Tavakoli, J. Extraction of Essential Oil from Aloysia citriodora Palau Leaves Using Continuous and Pulsed Ultrasound: Kinetics, Antioxidant Activity and Antimicrobial Properties. Process Biochem. 2018, 65, 197–204. [Google Scholar] [CrossRef]
- Nelios, G.; Santarmaki, V.; Pavlatou, C.; Dimitrellou, D.; Kourkoutas, Y. New Wild-Type Lacticaseibacillus rhamnosus Strains as Candidates to Manage Type 1 Diabetes. Microorganisms 2022, 10, 272. [Google Scholar] [CrossRef]
- Palframan, R.; Gibson, G.R.; Rastall, R.A. Development of a Quantitative Tool for the Comparison of the Prebiotic Effect of Dietary Oligosaccharides. Lett. Appl. Microbiol. 2003, 37, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-González, I.; Rodríguez-Serrano, G.; Gómez-Ruiz, L.; García-Garibay, M.; Cruz-Guerrero, A. Prebiotic Effect of Commercial Saccharides on Probiotic Bacteria Isolated from Commercial Products. Food Sci. Technol. 2019, 39, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, K.B.; de Albuquerque, T.M.R.; Rodrigues, N.P.A.; de Oliveira, M.E.G.; de Souza, E.L. Selection of Lactic Acid Bacteria with In Vitro Probiotic-Related Characteristics from the Cactus Pilosocereus gounellei (A. Weber Ex. K. Schum.) Bly. Ex Rowl. Foods 2021, 10, 2960. [Google Scholar] [CrossRef]
- Nath, S.; Sikidar, J.; Roy, M.; Deb, B. In Vitro Screening of Probiotic Properties of Lactobacillus plantarum Isolated from Fermented Milk Product. Food Qual. Saf. 2020, 4, 213–223. [Google Scholar] [CrossRef]
- Ferrando, V.; Quiberoni, A.; Reinhemer, J.; Suárez, V. Resistance of Functional Lactobacillus plantarum Strains against Food Stress Conditions. Food Microbiol. 2015, 48, 63–71. [Google Scholar] [CrossRef]
- Wang, J.; Lu, C.; Xu, Q.; Li, Z.; Song, Y.; Zhou, S.; Zhang, T.; Luo, X. Bacterial Diversity and Lactic Acid Bacteria with High Alcohol Tolerance in the Fermented Grains of Soy Sauce Aroma Type Baijiu in North China. Foods 2022, 11, 1794. [Google Scholar] [CrossRef] [PubMed]
- Clsi 2017.Pdf. Available online: https://file.qums.ac.ir/repository/mmrc/clsi%202017.pdf (accessed on 10 February 2023).
- Mitropoulou, G.; Fitsiou, E.; Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Bardouki, H.; Vamvakias, M.; Panas, P.; Chlichlia, K.; Pappa, A.; Kourkoutas, Y. Citrus Medica Essential Oil Exhibits Significant Antimicrobial and Antiproliferative Activity. LWT 2017, 84, 344–352. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, W.; Zhu, Y.; Zhao, T.; Xiao, F.; Wang, Y.; Lu, B. Acteoside, the Main Bioactive Compound in Osmanthus fragrans Flowers, Palliates Experimental Colitis in Mice by Regulating the Gut Microbiota. J. Agric. Food Chem. 2022, 70, 1148–1162. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.; Kim, J.S.; Kang, K.A.; Bu, H.D.; Lee, Y.; Seo, Y.R.; Hyun, J.W.; Kang, S.S. Antioxidant Activity of Isoacteoside from Clerodendron trichotomum. J. Toxicol. Environ. Health A 2005, 68, 389–400. [Google Scholar] [CrossRef]
- Gao, H.; Cui, Y.; Kang, N.; Liu, X.; Liu, Y.; Zou, Y.; Zhang, Z.; Li, X.; Yang, S.; Li, J.; et al. Isoacteoside, a Dihydroxyphenylethyl Glycoside, Exhibits Anti-Inflammatory Effects through Blocking Toll-like Receptor 4 Dimerization. Br. J. Pharmacol. 2017, 174, 2880–2896. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xie, Y.; Li, K.; Wu, A.; Xie, H.; Guo, Q.; Xue, P.; Maleshibek, Y.; Zhao, W.; Guo, J.; et al. Antioxidation and Cytoprotection of Acteoside and Its Derivatives: Comparison and Mechanistic Chemistry. Molecules 2018, 23, 498. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.J.; Jang, H.J.; Bak, S.G.; Lee, S.; Lee, S.W.; Lee, K.M.; Lee, S.-J.; Rho, M.-C. In Vitro Inhibitory Effects of Cirsiliol on IL-6-Induced STAT3 Activation through Anti-Inflammatory Activity. Bioorg. Med. Chem. Lett. 2019, 29, 1586–1592. [Google Scholar] [CrossRef]
- Patel, D.K. Medicinal Importance of Flavonoid “Eupatorin” in the Health Sectors: Therapeutic Benefit and Pharmacological Activities through Scientific Data Analysis. Curr. Chin. Sci. 2021, 1, 629–638. [Google Scholar] [CrossRef]
- Gong, G.; Guan, Y.-Y.; Zhang, Z.-L.; Rahman, K.; Wang, S.-J.; Zhou, S.; Luan, X.; Zhang, H. Isorhamnetin: A Review of Pharmacological Effects. Biomed. Pharmacother. 2020, 128, 110301. [Google Scholar] [CrossRef]
- Li, J.; Yuan, H.; Zhao, Z.; Li, L.; Li, X.; Zhu, L.; Wang, X.; Sun, P.; Xiao, Y. The Mitigative Effect of Isorhamnetin against Type 2 Diabetes via Gut Microbiota Regulation in Mice. Front. Nutr. 2022, 9, 1070908. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Y.; Liu, Y.; Disasa, D.; Akira, M.; Xiang, L.; Qi, J. A New Geniposidic Acid Derivative Exerts Antiaging Effects through Antioxidative Stress and Autophagy Induction. Antioxidants 2021, 10, 987. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.-G.; Tan, X.-P.; Cui, H.-B.; Qi, X.-Z.; Zhu, B.; Wang, G.-X. Antiviral Activity of Geniposidic Acid against White Spot Syndrome Virus Replication in Red Swamp Crayfish Procambarus clarkii. Aquaculture 2020, 528, 735533. [Google Scholar] [CrossRef]
- Fu, R.; Wang, L.; Meng, Y.; Xue, W.; Liang, J.; Peng, Z.; Meng, J.; Zhang, M. Apigenin Remodels the Gut Microbiota to Ameliorate Ulcerative Colitis. Front. Nutr. 2022, 9, 1062961. [Google Scholar] [CrossRef]
- Wang, M.; Firrman, J.; Liu, L.; Yam, K. A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota. BioMed Res. Int. 2019, 2019, e7010467. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, F.; Zhou, R.; Song, X.; Xie, M. Apigenin: A Current Review on Its Beneficial Biological Activities. J. Food Biochem. 2017, 41, e12376. [Google Scholar] [CrossRef]
- Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals 2019, 12, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.; Zeng, Z.; Lin, Y.; Wang, P.; Cao, D.; Xie, K.; Luo, Y.; Yang, H.; Yang, J.; Wang, W.; et al. Naringenin Suppresses Epithelial Ovarian Cancer by Inhibiting Proliferation and Modulating Gut Microbiota. Phytomedicine 2022, 106, 154401. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Du, P.; Du, Y.; Zhao, D.; Cai, Y.; Yang, Q.; Guo, Z. Luteolin Alleviates Inflammation and Modulates Gut Microbiota in Ulcerative Colitis Rats. Life Sci. 2021, 269, 119008. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, X.; Du, X.; Sun, W.; Zhang, Y. Study of Chemical Composition and Antimicrobial Activity of Leaves and Roots of Scrophularia Ningpoensis. Nat. Prod. Res. 2009, 23, 775–780. [Google Scholar] [CrossRef]
- Niu, X.; Song, H.; Xiao, X.; Yang, Y.; Huang, Q.; Yu, J.; Yu, J.; Liu, Y.; Han, T.; Zhang, D.; et al. Tectoridin Ameliorates Proliferation and Inflammation in TNF-α-Induced HFLS-RA Cells via Suppressing the TLR4/NLRP3/NF-ΚB Signaling Pathway. Tissue Cell 2022, 77, 101826. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, P.; Zhu, Y.; Lou, Q.; He, S. Antioxidant and Prebiotic Activity of Five Peonidin-Based Anthocyanins Extracted from Purple Sweet Potato (Ipomoea batatas (L.) Lam.). Sci. Rep. 2018, 8, 5018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Q.-Y.; Summanen, P.H.; Lee, R.-P.; Huang, J.; Henning, S.M.; Heber, D.; Finegold, S.M.; Li, Z. Prebiotic Potential and Chemical Composition of Seven Culinary Spice Extracts: Prebiotic Potential of Spice Extracts. J. Food Sci. 2017, 82, 1807–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Nie, S.; Xie, M. Interaction between Gut Immunity and Polysaccharides. Crit. Rev. Food Sci. Nutr. 2017, 57, 2943–2955. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Zhu, Q.; Pang, D.; Liu, F.; Liao, S.; Zou, Y. Analysis of Lactobacillus Rhamnosus GG in Mulberry Galacto-Oligosaccharide Medium by Comparative Transcriptomics and Metabolomics. Front. Nutr. 2022, 9, 853271. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, C.; Wakita, Y.; Inoue, T.; Hiramitsu, M.; Okada, M.; Mitani, Y.; Segawa, S.; Tsuchiya, Y.; Nabeshima, T. Effects of Lifelong Intake of Lemon Polyphenols on Aging and Intestinal Microbiome in the Senescence-Accelerated Mouse Prone 1 (SAMP1). Sci. Rep. 2019, 9, 3671. [Google Scholar] [CrossRef] [Green Version]
- Cai, D.; Harrison, N.A.; Kling, D.N.; Gonzalez, C.F.; Lorca, G.L. Blueberries as an Additive to Increase the Survival of Lactobacillus johnsonii N6.2 to Lyophilisation. Benef. Microbes 2019, 10, 473–482. [Google Scholar] [CrossRef]
- De Miera, L.S.; Rúa, J.; del Pilar del Valle, M.; Sanz, J.; Armesto, M.R.G. Synergistic Antimicrobial Effect of a Lippia citriodora Natural Extract with Vanillin against Verotoxigenic Escherichia coli in Refrigerated Piel de Sapo Melon Juice. J. Food Prot. 2022, 85, 1506–1514. [Google Scholar] [CrossRef]
- Mothana, R.A.A.; Abdo, S.A.A.; Hasson, S.; Althawab, F.M.N.; Alaghbari, S.A.Z.; Lindequist, U. Antimicrobial, Antioxidant and Cytotoxic Activities and Phytochemical Screening of Some Yemeni Medicinal Plants. Evid. Based Complement. Alternat. Med. 2010, 7, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Elgueta, E.; Mena, J.; Orihuela, P.A. Hydroethanolic Extracts of Haplopappus baylahuen Remy and Aloysia citriodora Palau Have Bactericide Activity and Inhibit the Ability of Salmonella Enteritidis to Form Biofilm and Adhere to Human Intestinal Cells. BioMed Res. Int. 2021, 2021, e3491831. [Google Scholar] [CrossRef]
- Miller, A.B.; Cates, R.G.; Lawrence, M.; Soria, J.A.F.; Espinoza, L.V.; Martinez, J.V.; Arbizú, D.A. The Antibacterial and Antifungal Activity of Essential Oils Extracted from Guatemalan Medicinal Plants. Pharm. Biol. 2015, 53, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Betancourt, L.; Phandanauvong, V.; Patino, R.; Ariza-Nieto, C.; Afanador-Téllez, G. Composition and Bactericidal Activity against Beneficial and Pathogenic Bacteria of Oregano Essential Oils from Four Chemotypes of Origanum and Lippia Genus. Rev. Fac. Med. Vet. Zootec. 2012, 59, 21–31. [Google Scholar]
- Rashid, H.M.; Mahmod, A.I.; Afifi, F.U.; Talib, W.H. Antioxidant and Antiproliferation Activities of Lemon Verbena (Aloysia citrodora): An In Vitro and In Vivo Study. Plants 2022, 11, 785. [Google Scholar] [CrossRef] [PubMed]
Aloysia citrodora EtOH Extract—Negative | ||||
---|---|---|---|---|
Row No. | Component Name | Observed m/z | Mass Error (mDa) | Response |
1 | Acteoside | 623.1986 | 0.4 | 2,292,685 |
2 | Isoacteoside | 623.1982 | 0 | 1,882,823 |
3 | Cirsiliol | 329.0668 | 0.1 | 963,036 |
4 | Hispidulin | 299.0562 | 0.1 | 823,986 |
5 | Eupatorin | 343.0822 | −0.1 | 591,793 |
6 | Pectolinarigenin | 313.072 | 0.2 | 387,648 |
7 | Isorhamnetin | 315.051 | 0 | 299,038 |
8 | Geniposidic-Acid | 373.1138 | −0.2 | 295,613 |
9 | Leucosceptoside A | 637.2136 | −0.2 | 208,446 |
10 | Apigenin | 269.0456 | 0.1 | 132,449 |
11 | Naringenin | 271.0611 | −0.1 | 123,043 |
12 | Luteolin | 285.0403 | −0.2 | 35,290 |
13 | Isorhamnetin 3-O-glucoside | 477.1037 | −0.1 | 27,382 |
14 | Homoplantaginin_Tectoridin | 461.1086 | −0.4 | 23,435 |
15 | 4-Hydroxybenzoic acid 4-O-glucoside | 299.0768 | −0.4 | 13,422 |
Aloysia citrodora EtOH Extract—Positive | ||||
---|---|---|---|---|
Row No. | Component Name | Observed m/z | Mass Error (mDa) | Response |
1 | Acteoside | 647.1942 | −0.5 | 797,019 |
2 | Isoacteoside | 647.1949 | 0.3 | 498,939 |
3 | Cirsiliol | 331.0807 | −0.6 | 486,000 |
4 | Eupatorin | 345.0961 | −0.7 | 434,876 |
5 | Hispidulin | 301.0708 | 0.2 | 354,196 |
6 | Geniposidic-Acid | 397.11 | −0.6 | 287,194 |
7 | Dimethylmatairesinol | 409.1614 | −0.7 | 165,605 |
8 | Pectolinarigenin | 315.0855 | −0.8 | 86,037 |
9 | Isorhamnetin | 317.0647 | −0.9 | 73,872 |
10 | Pinoresinol-4-O-Beta-Monoglycoside | 543.1831 | −0.5 | 58,992 |
11 | Leucosceptoside A | 661.2101 | −0.2 | 55,225 |
12 | Kaempferol | 286.0465 | −0.7 | 30,280 |
13 | Apigenin | 271.0594 | −0.7 | 16,561 |
14 | Naringenin | 273.0749 | −0.8 | 14,227 |
Aloysia citrodora H2O Extract—Negative | ||||
---|---|---|---|---|
Row No. | Component Name | Observed m/z | Mass Error (mDa) | Response |
1 | Luteolin 7-O-diglucuronide | 637.104 | −0.6 | 1,157,953 |
2 | Acteoside | 623.198 | −0.2 | 971,531 |
3 | Geniposidic-Acid | 373.1143 | 0.3 | 399,595 |
4 | Isoacteoside | 623.1985 | 0.4 | 269,646 |
5 | Malic acid | 133.0143 | 0.1 | 223,063 |
6 | Apigenin 7-O-diglucuronide | 621.1094 | −0.3 | 202,647 |
7 | 4-Hydroxybenzoic acid 4-O-glucoside | 299.0772 | 0 | 54,020 |
8 | Eupatorin | 343.0819 | −0.5 | 33,223 |
9 | Leucosceptoside A | 637.2129 | −0.9 | 23,761 |
10 | Vicenin-2 | 593.151 | −0.2 | 22,973 |
11 | Cirsiliol | 329.0665 | −0.2 | 14,545 |
12 | Pectolinarigenin | 313.0716 | −0.2 | 13,039 |
13 | Protocatechuic acid 4-O-glucoside | 315.0723 | 0.1 | 12,191 |
14 | Eriocitrin | 595.1663 | −0.6 | 11,704 |
15 | Coumaric acid (p-) | 163.0399 | −0.2 | 8432 |
Aloysia citrodora H2O Extract—Positive | ||||
---|---|---|---|---|
Row No. | Component Name | Observed m/z | Mass Error (mDa) | Response |
1 | Luteolin 7-O-diglucuronide | 639.1197 | 0.5 | 655,236 |
2 | Geniposidic-Acid | 397.1095 | −1 | 380,211 |
3 | Acteoside | 647.1952 | 0.6 | 236,018 |
4 | Apigenin 7-O-diglucuronide | 623.1246 | 0.3 | 134,959 |
5 | Dimethylmatairesinol | 409.1614 | −0.8 | 124,934 |
6 | Pinoresinol-4-O-Beta-Monoglycoside | 543.1842 | 0.5 | 41,603 |
7 | Isoacteoside | 647.1966 | 2 | 37,067 |
8 | 4-Hydroxybenzoic acid 4-O-glucoside | 323.0729 | −0.8 | 34,696 |
9 | Eupatorin | 345.0958 | −1.1 | 17,851 |
10 | Leucosceptoside A | 661.2112 | 0.9 | 6345 |
11 | Coumaric acid-4’-O-glucoside | 349.0882 | −1.2 | 4471 |
12 | Herniarin | 177.0538 | −0.8 | 3055 |
13 | Cirsiliol | 331.0797 | −1.5 | 2977 |
14 | Apigenin-7-O-glucuronide | 447.0926 | 0.4 | 2594 |
15 | Vicenin-2 | 617.1463 | −1.4 | 2533 |
Microbial Species | A. citrodora (Aqueous) | A. citrodora (Ethanolic) | ||
---|---|---|---|---|
MIC | MBC | MIC | MBC | |
S. Enteritidis | 12.5 | 50 | 6.25 | 25 |
S. Typhimurium | 12.5 | 50 | 6.25 | 25 |
L. monocytogenes | 6.25 | 25 | 1.56 | 6.25 |
E. coli | NA | NA | 12.5 | 50 |
S. aureus | 6.25 | 25 | 3.12 | 12.5 |
Microbial Species | A. citrodora (Aqueous) | A. citrodora (Ethanolic) | ||
---|---|---|---|---|
MIC | MBC | MIC | MBC | |
L. rhamnosus GG | 50 | 200 | 25 | 100 |
L. rhamnosus OLXAL-1 | 100 | 400 | 50 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkalpinos, V.K.; Anagnostou, V.A.; Mitropoulou, G.; Kompoura, V.; Karapantzou, I.; Fasoulis, C.K.; Vasdekis, E.P.; Kourkoutas, Y.; Tzakos, A.G. Aloysia citrodora Extracts Cultivated in Greece as Antioxidants and Potent Regulators of Food Microbiota. Appl. Sci. 2023, 13, 3663. https://doi.org/10.3390/app13063663
Gkalpinos VK, Anagnostou VA, Mitropoulou G, Kompoura V, Karapantzou I, Fasoulis CK, Vasdekis EP, Kourkoutas Y, Tzakos AG. Aloysia citrodora Extracts Cultivated in Greece as Antioxidants and Potent Regulators of Food Microbiota. Applied Sciences. 2023; 13(6):3663. https://doi.org/10.3390/app13063663
Chicago/Turabian StyleGkalpinos, Vasileios K., Vasiliki A. Anagnostou, Gregoria Mitropoulou, Vasiliki Kompoura, Ioanna Karapantzou, Christodoulos K. Fasoulis, Efstathios P. Vasdekis, Yiannis Kourkoutas, and Andreas G. Tzakos. 2023. "Aloysia citrodora Extracts Cultivated in Greece as Antioxidants and Potent Regulators of Food Microbiota" Applied Sciences 13, no. 6: 3663. https://doi.org/10.3390/app13063663
APA StyleGkalpinos, V. K., Anagnostou, V. A., Mitropoulou, G., Kompoura, V., Karapantzou, I., Fasoulis, C. K., Vasdekis, E. P., Kourkoutas, Y., & Tzakos, A. G. (2023). Aloysia citrodora Extracts Cultivated in Greece as Antioxidants and Potent Regulators of Food Microbiota. Applied Sciences, 13(6), 3663. https://doi.org/10.3390/app13063663