Application of Support Vector Machine Algorithm Incorporating Slime Mould Algorithm Strategy in Ancient Glass Classification
Abstract
:1. Introduction
- An excellent classification model for glass artefact kinds has been identified;
- We incorporate the slime mould algorithm strategy into a support vector machine model and provide a parameter-optimisation strategy for support vector machines;
- We compare the multiple categorisation models, and the experimental findings demonstrate the superiority of the algorithmic approach provided in this study;
- The model is applicable to additional glass artefact samples.
2. Materials and Methods
2.1. Datasets
2.2. Data Processing
2.2.1. Elimination of Invalid Data and Quantitative Processing
2.2.2. Data Balancing
2.2.3. Component Data
2.2.4. Centred Log-Ratio Transformation
- The intuitive form of the data differs between monomorphic and euclidean space and cannot be interpreted across space;
- The covariance matrices of the component data calculated on the monomorphic space are significantly biased negative, with very different connotations from those on the Euclidean space;
- The lack of parametric distribution of the component data on the monomorphic space makes it difficult to model the variational patterns of the data for analysis.
2.3. Methodology
2.4. Support Vector Machines
2.5. Slime Mould Algorithm
2.6. Support Vector Machines Incorporating Slime Mould Algorithm Strategies
2.7. Model Training
3. Results
3.1. Experimental Environment
3.2. Experimental Results
3.2.1. Evaluation Indicators
3.2.2. Results of the Optimisation Algorithm
3.2.3. Comparison of Classification Models
4. Discussion
5. Conclusions
- The model will determine the classification of the newly excavated glass;
- The model can be compared with deep learning methods. It is limited by the small amount of data, and deep learning methods have not been utilised in this study;
- In conjunction with the location of the research samples and the distribution patterns of the material content of the local soils, the trade relationships between the ancient regions are determined.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, C.; Czae, M.-Z.; Kim, S.; Kang, H.T.; Lee, J.D. Classification of Korean ancient glass pieces by pattern recognition method. J. Korean Chem. Soc. 1992, 36, 113–124. [Google Scholar]
- Yoon, Y.Y.; Lee, K.Y.; Chung, K.S.; Yang, M.K.; Kim, K.H. Classification of Korean old potteries by trace elements analysis. J. Radioanal. Nucl. Chem. 2001, 248, 89–92. [Google Scholar] [CrossRef]
- Baert, K.; Meulebroeck, W.; Wouters, H.; Ceglia, A.; Nys, K.; Thienpont, H.; Terryn, H. Raman spectroscopy as a rapid screening method for ancient plain window glass. J. Raman Spectrosc. 2011, 42, 1055–1061. [Google Scholar] [CrossRef]
- Schibille, N.; Gratuze, B.; Ollivier, E.; Blondeau, É. Chronology of early Islamic glass compositions from Egypt. J. Archaeol. Sci. 2019, 104, 10–18. [Google Scholar] [CrossRef]
- Su, H.M. Characteristic Analysis of Chemical Compositions for Ancient Glasses Excavated from the Sarira Hole of Mireuksaji Stone Pagoda, Iksan. J. Conserv. Sci. 2017, 33, 215–223. [Google Scholar]
- Xingling, T.; Jianyu, W.; Yong, C. A study of glass beads recovered from the Ming Dynasty shipwreck of Nan’ao 1. Cult. Relics 2016, 12, 87–92. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, T.; Toumazou, M.K.; Counts, D.B.; Kakoulli, I. Chemical analyses and production technology of archaeological glass from Athienou-Malloura, Cyprus. J. Archaeol. Sci. Rep. 2019, 23, 700–713. [Google Scholar] [CrossRef]
- Oikonomou, A.; Triantafyllidis, P. An archaeometric study of Archaic glass from Rhodes, Greece: Technological and provenance issues. J. Archaeol. Sci. Rep. 2018, 22, 493–505. [Google Scholar] [CrossRef]
- Wen, F.; Gui, G.; Gacanin, H.; Sari, H. Compressive sampling framework for 2D-DOA and polarization estimation in mmWave polarized massive MIMO systems. IEEE Trans. Wirel. Commun. 2022, 29, 2612–2616. [Google Scholar] [CrossRef]
- Wen, F.; Shi, J.; Gui, G.; Gacanin, H.; Dobre, O.A. 3-D Positioning Method for Anonymous UAV Based on Bistatic Polarized MIMO Radar. IEEE Internet Things J. 2022, 10, 815–827. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2022, 78, 1–32. [Google Scholar] [CrossRef]
- Narodytska, N.; Ignatiev, A.; Pereira, F.; Marques-Silva, J.; Ras, I. Learning Optimal Decision Trees with SAT. In Proceedings of the International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 1362–1368. [Google Scholar]
- Yang, Y.; Morillo, I.G.; Hospedales, T.M. Deep neural decision trees. arXiv 2018, arXiv:1806.06988. [Google Scholar]
- Iwendi, C.; Bashir, A.K.; Peshkar, A.; Sujatha, R.; Chatterjee, J.M.; Pasupuleti, S.; Mishra, R.; Pillai, S.; Jo, O. COVID-19 patient health prediction using boosted random forest algorithm. Front. Public Health 2020, 8, 357. [Google Scholar] [CrossRef] [PubMed]
- Gul, A.; Perperoglou, A.; Khan, Z.; Mahmoud, O.; Miftahuddin, M.; Adler, W.; Lausen, B. Ensemble of a subset of kNN classifiers. Adv. Data Anal. Classif. 2018, 12, 827–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, H.; Xu, Y.; Lin, A.; Heidari, A.A.; Wang, M.; Chen, H.; Luo, Y.; Li, C. Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers. IEEE Access 2020, 8, 35546–35562. [Google Scholar] [CrossRef]
- Abhilash, P.; Chakradhar, D. Prediction and analysis of process failures by ANN classification during wire-EDM of Inconel 718. Adv. Manuf. 2020, 8, 519–536. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhan, W.; He, Z.; Zou, Y. Application of spatio-temporal context and convolution neural network (CNN) in grooming behavior of Bactrocera minax (diptera: Trypetidae) detection and statistics. Insects 2020, 11, 565. [Google Scholar] [CrossRef]
- Assael, Y.; Sommerschield, T.; Shillingford, B.; Bordbar, M.; Pavlopoulos, J.; Chatzipanagiotou, M.; Androutsopoulos, I.; Prag, J.; de Freitas, N. Restoring and attributing ancient texts using deep neural networks. Nature 2022, 603, 280–283. [Google Scholar] [CrossRef]
- Hong, S.; Zhan, W.; Dong, T.; She, J.; Min, C.; Huang, H.; Sun, Y. A Recognition Method of Bactrocera minax (Diptera: Tephritidae) Grooming Behavior via a Multi-Object Tracking and Spatio-Temporal Feature Detection Model. J. Insect Behav. 2022, 35, 67–81. [Google Scholar] [CrossRef]
- Jiang, Y.; Xie, J.; Han, Z.; Liu, W.; Xi, S.; Huang, L.; Huang, W.; Lin, T.; Zhao, L.; Hu, Y. Immunomarker Support Vector Machine Classifier for Prediction of Gastric Cancer Survival and Adjuvant Chemotherapeutic BenefitImmunomarker SVM–Based Predictive Classifier. Clin. Cancer Res. 2018, 24, 5574–5584. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Dong, Y.; Liu, H.; Shao, X.; Wang, C. Forecast of non-equal interval track irregularity based on improved grey model and PSO-SVM. IEEE Access 2018, 6, 34812–34818. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Bi, W.-H.; Gan, W.-Y.; Li, X.-Y.; Zhang, B.-J.; Fu, G.-W.; Jiang, T.-J. Identification of ichthyotoxic red tide algae based on three-dimensional fluorescence spectra and particle swarm optimization support vector machine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 268, 120711. [Google Scholar] [CrossRef] [PubMed]
- Bin, S.; Jiancheng, W. Research advances in artificial intelligence for prognosis prediction of liver cancer patients. Acad. J. PLA Postgrad. Med. Sch. 2020, 41, 922–925, 953. [Google Scholar]
- Idrissi, B.Y.; Arjovsky, M.; Pezeshki, M.; Lopez-Paz, D. Simple data balancing achieves competitive worst-group-accuracy. In Proceedings of the Conference on Causal Learning and Reasoning, Eureka, CA, USA, 11–13 April 2022; pp. 336–351. [Google Scholar]
- Yi, H.; Jiang, Q.; Yan, X.; Wang, B. Imbalanced classification based on minority clustering synthetic minority oversampling technique with wind turbine fault detection application. IEEE Trans. Ind. Inform. 2020, 17, 5867–5875. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, C.; Zhu, Y. Entropy and confidence-based undersampling boosting random forests for imbalanced problems. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 5178–5191. [Google Scholar] [CrossRef]
- Puri, A.; Kumar Gupta, M. Improved hybrid bag-boost ensemble with K-means-SMOTE–ENN technique for handling noisy class imbalanced data. Comput. J. 2022, 65, 124–138. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Ishaq, A.; Sadiq, S.; Umer, M.; Ullah, S.; Mirjalili, S.; Rupapara, V.; Nappi, M. Improving the prediction of heart failure patients’ survival using SMOTE and effective data mining techniques. IEEE Access 2021, 9, 39707–39716. [Google Scholar] [CrossRef]
- Guo, L.; Guan, R. A Comparative Study of Compositional Data Transformation Methods Based on Spatial Equivalence. Stat. Appl. 2018, 7, 271. [Google Scholar]
- Zhan, W.; Hong, S.; Sun, Y.; Zhu, C. The system research and implementation for autorecognition of the ship draft via the UAV. Int. J. Antennas Propag. 2021, 2021, 4617242. [Google Scholar] [CrossRef]
- Chao, M.; Wei, Z.; Yuqi, Z.; Jianhua, L.; Shengbing, H.; Yu, T.T.; Jinhui, S.; Huazi, H. Trajectory tracking and behaviour of grain storage pests based on Hungarian algorithm and LSTM network. J. Chin. Cereals Oils Assoc. 1–13. Available online: http://kns.cnki.net/kcms/detail/11.2864.TS.20220708.1012.008.html (accessed on 20 February 2023).
- Mengyuan, X.; Wei, Z.; Lianyou, G.; Hu, L.; Peiwen, W.; Tao, H.; Weihao, L.; Yong, S. Maize leaf disease detection and identification based on ResNet model. Jiangsu Agric. Sci. 1–8. Available online: http://kns.cnki.net/kcms/detail/32.1214.S.20221107.0921.002.html (accessed on 20 February 2023).
- Zhan, W.; Zou, Y.; He, Z.; Zhang, Z. Key points tracking and grooming behavior recognition of Bactrocera minax (Diptera: Trypetidae) via DeepLabCut. Math. Probl. Eng. 2021, 2021, 1392362. [Google Scholar] [CrossRef]
- Sun, C.; Zhan, W.; She, J.; Zhang, Y. Object detection from the video taken by drone via convolutional neural networks. Math. Probl. Eng. 2020, 2020, 4013647. [Google Scholar] [CrossRef]
- Zhan, W.; Sun, C.; Wang, M.; She, J.; Zhang, Y.; Zhang, Z.; Sun, Y. An improved Yolov5 real-time detection method for small objects captured by UAV. Soft Comput. 2022, 26, 361–373. [Google Scholar] [CrossRef]
- She, J.; Zhan, W.; Hong, S.; Min, C.; Dong, T.; Huang, H.; He, Z. A method for automatic real-time detection and counting of fruit fly pests in orchards by trap bottles via convolutional neural network with attention mechanism added. Ecol. Inform. 2022, 70, 101690. [Google Scholar] [CrossRef]
- El Naqa, I.; Murphy, M.J. What is machine learning? In Machine Learning in Radiation Oncology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–11. [Google Scholar]
- Huang, H.; Zhan, W.; Du, Z.; Hong, S.; Dong, T.; She, J.; Min, C. Pork primal cuts recognition method via computer vision. Meat Sci. 2022, 192, 108898. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhan, W.; Han, T.; Wang, P.; Liu, H.; Xiong, M.; Hong, S. Research and Application of U2-NetP Network Incorporating Coordinate Attention for Ship Draft Reading in Complex Situations. J. Signal Process. Syst. 2022, 94, 1–19. [Google Scholar] [CrossRef]
- Al-Dabagh, M.Z.N.; Alhabib, M.M.; Al-Mukhtar, F. Face recognition system based on kernel discriminant analysis, k-nearest neighbor and support vector machine. Int. J. Res. Eng. 2018, 5, 335–338. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Li, Z.; Cao, J.; Chen, T.; Wang, L. Convolutional recurrent neural networks for text classification. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–6. [Google Scholar]
- Li, X.; Kong, J. Application of GA–SVM method with parameter optimization for landslide development prediction. Nat. Hazards Earth Syst. Sci. 2014, 14, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Kamboj, V.K.; Kumari, C.L.; Bath, S.K.; Prashar, D.; Rashid, M.; Alshamrani, S.S.; AlGhamdi, A.S. A cost-effective solution for non-convex economic load dispatch problems in power systems using slime mould algorithm. Sustainability 2022, 14, 2586. [Google Scholar] [CrossRef]
- Farhat, M.; Kamel, S.; Atallah, A.M.; Hassan, M.H.; Agwa, A.M. ESMA-OPF: Enhanced slime mould algorithm for solving optimal power flow problem. Sustainability 2022, 14, 2305. [Google Scholar] [CrossRef]
- Xiao, W.Y.; Yufen, T.; Li, Z.; Zhifei, X. A clinical prediction model for children with severe obstructive sleep apnoea. Chin. J. Pract. Pediatr. 2022, 37, 701–707. [Google Scholar] [CrossRef]
- Bugoi, R.; Mureşan, O. A brief study on the chemistry of some Roman glass finds from Apulum. Rom. Rep. Phys 2021, 73, 803. [Google Scholar]
- Bugoi, R.; Alexandrescu, C.-G.; Panaite, A. Chemical composition characterization of ancient glass finds from Troesmis—Turcoaia, Romania. Archaeol. Anthropol. Sci. 2018, 10, 571–586. [Google Scholar] [CrossRef]
Algorithms | Time |
---|---|
GA | 0.28353 s 0.15394 s |
SMA |
Algorithms | Parameters |
---|---|
DT | Node splitting evaluation criteria = gini Feature division point selection criteria = random Minimum samples for internal node splitting = 2 Minimum samples in leaf nodes = 1 Maximum leaf nodes = 2 Maximum depth of the tree = 14 |
RF | Node split evaluation criterion = gini Number of decision trees = 5 Minimum samples in leaf nodes = 1 Maximum depth of the tree = 14 Maximum leaf nodes = 2 |
SVM | kernel = ‘rbf’ C = 20 γ = 2.00 |
GA | ga_option.maxgen = 50 ga_option.sizepop = 5 ga_option.ggap = 0.7 |
SMA | pop = 5 dim = 2 |
Algorithms | TrainAcc | TestAcc | Precision | Recall | F1 Score |
---|---|---|---|---|---|
DT | 0.793 | 0.800 | 0.816 | 0.793 | 0.788 |
RF | 0.948 | 0.850 | 0.868 | 0.864 | 0.864 |
SVM | 0.810 | 0.900 | 0.859 | 0.810 | 0.799 |
GA-SVM | 1.000 | 0.925 | 0.928 | 0.931 | 0.930 |
SMA-SVM | 1.000 | 0.975 | 0.974 | 0.977 | 0.975 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Zhan, W.; Li, W. Application of Support Vector Machine Algorithm Incorporating Slime Mould Algorithm Strategy in Ancient Glass Classification. Appl. Sci. 2023, 13, 3718. https://doi.org/10.3390/app13063718
Guo Y, Zhan W, Li W. Application of Support Vector Machine Algorithm Incorporating Slime Mould Algorithm Strategy in Ancient Glass Classification. Applied Sciences. 2023; 13(6):3718. https://doi.org/10.3390/app13063718
Chicago/Turabian StyleGuo, Yuheng, Wei Zhan, and Weihao Li. 2023. "Application of Support Vector Machine Algorithm Incorporating Slime Mould Algorithm Strategy in Ancient Glass Classification" Applied Sciences 13, no. 6: 3718. https://doi.org/10.3390/app13063718
APA StyleGuo, Y., Zhan, W., & Li, W. (2023). Application of Support Vector Machine Algorithm Incorporating Slime Mould Algorithm Strategy in Ancient Glass Classification. Applied Sciences, 13(6), 3718. https://doi.org/10.3390/app13063718