Influence of Organic Fertilization and Soil Tillage on the Yield and Quality of Cold-Pressed Camelina [Camelina sativa (L.) Crantz] Seed Cake: An Alternative Feed Ingredient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Sampling Procedures, Measurements, and Methods
2.3. Statistical Analysis
3. Results
3.1. Seed Yield, Oilseed Cake Extraction Rate, and Yield of Camelina
3.2. Nutritional Composition of Camelina Oilseed Cake
3.3. Fatty Acid Composition and Ratios of Camelina Oilseed Cake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. COM (2020) 381 Final; European Union: Brussels, Belgium, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381 (accessed on 18 January 2023).
- Denanot, J.P. Report on a European Strategy for the Promotion of Protein Crops—Encouraging the Production of Protein and Leguminous Plants in the European Agriculture Sector (2017/2116(INI)). Committee on Agriculture and Rural Development. European Parliament 2014–2019. 2018. Available online: https://www.europarl.europa.eu/doceo/document/A-8-2018-0121_EN.html (accessed on 18 January 2023).
- Lolli, S.; Grilli, G.; Ferrari, L.; Battelli, G.; Pozzo, S.; Galasso, I.; Russo, R.; Brasca, M.; Reggiani, R.; Ferrante, V. Effect of different percentage of Camelina sativa cake in laying hens diet: Performance, welfare, and eggshell quality. Animals 2020, 10, 1396. [Google Scholar] [CrossRef] [PubMed]
- Riaz, R.; Ahmed, I.; Sizmaz, O.; Ahsan, U. Use of Camelina sativa and by-products in diets for dairy cows: A Review. Animals 2022, 12, 1082. [Google Scholar] [CrossRef] [PubMed]
- Dönmez, E.O.; Belli, O. Urartian plant cultivation at Yoncatepe (Van), eastern Turkey. Econ. Bot. 2007, 61, 290–298. [Google Scholar] [CrossRef]
- Kroll, H. Agriculture and arboriculture in mainland Greece at the beginning of the first millenium B.C. Pallas 2000, 52, 61–68. [Google Scholar]
- Van Zeist, W.A. Plant remains from Iron Age Noordbarge, province of Drenthe, the Netherlands. Palaeohistoria 1981, 23, 169–193. [Google Scholar]
- Matthäus, B.; Zubr, J. Variability of specific components in Camelina sativa oilseed cakes. Ind. Crops Prod. 2000, 12, 9–18. [Google Scholar] [CrossRef]
- Vollmann, J.; Moritz, T.; Kargl, C.; Baumgartner, S.; Wagentristl, H. Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind. Crops Prod. 2007, 26, 270–277. [Google Scholar] [CrossRef]
- Wittkop, B.; Snowdon, R.; Friedt, W. Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 2009, 170, 131–140. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; French, A.N.; Clarke, T.R.; El-Shikha, D.M. Water use, crop coefficients, and irrigation management criteria for camelina production in arid regions. Irrig. Sci. 2011, 29, 27–43. [Google Scholar] [CrossRef]
- Zanetti, F.; Eynck, C.; Christou, M.; Krzyzaniak, M.; Righini, D.; Alexopoulou, E.; Stolarski, M.J.; VanLoo, E.N.; Puttick, D.; Monti, A. Agronomic performance and seed quality attributes of Camelina (Camelina sativa L. crantz) in multi-environment trials across Europe and Canada. Ind. Crops Prod. 2017, 107, 602–608. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, Y.A.; Chen, C.; Afshar, R.K. Nutrient requirements of camelina for biodiesel feedstock in Central Montana. Agron. J. 2017, 109, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Zubr, J. Oil-seed crop: Camelina sativa. Ind. Crops Prod. 1997, 6, 113–119. [Google Scholar] [CrossRef]
- Seguin-Swartz, G.; Eynck, C.; Gugel, R.K.; Strelkov, S.E.; Olivier, C.Y.; Li, J.L.; Klein-Gebbinck, H.; Borhan, H.; Caldwell, C.D.; Falk, K.C. Diseases of Camelina sativa (false flax). Can. J. Plant Pathol. 2009, 31, 375–386. [Google Scholar] [CrossRef]
- Zubr, J.; Matthäus, B. Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind. Crops Prod. 2002, 15, 155–162. [Google Scholar] [CrossRef]
- Abramovič, H.; Butinar, B.; Nikolič, V. Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage. Food Chem. 2007, 104, 903–909. [Google Scholar] [CrossRef]
- Zaleckas, E.; Makarevičiene, V.; Sendžikiene, E. Possibilities of using Camelina sativa oil for producing biodiesel fuel. Transport 2012, 27, 60–66. [Google Scholar] [CrossRef]
- Agusdinata, D.B.; Zhao, F.; Ileleji, K.; DeLaurentis, D. Life cycle assessment of potential biojet fuel production in the United States. Environ. Sci. Technol. 2011, 45, 9133–9143. [Google Scholar] [CrossRef]
- Ibrahim, F.M.; El Habbasha, S.F. Chemical composition, medicinal impacts and cultivation of camelina (Camelina sativa). Int. J. PharmTech. Res. 2015, 8, 114–122. [Google Scholar]
- European Commission. Commission Regulation (EC) No 68/2013 of 16 January 2013 on the Catalogue of Feed Materials; European Union: Brussels, Belgium, 2013; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013R0068&from=EN (accessed on 18 January 2023).
- Kakabouki, I.P.; Hela, D.; Roussis, I.; Papastylianou, P.; Sestras, A.F.; Bilalis, D.J. Influence of fertilization and soil tillage on nitrogen uptake and utilization efficiency of quinoa crop (Chenopodium quinoa Willd.). J. Soil Sci. Plant Nutr. 2018, 18, 220–235. [Google Scholar] [CrossRef] [Green Version]
- Kakar, K.; Xuan, T.D.; Noori, Z.; Aryan, S.; Gulab, G. Effects of organic and inorganic fertilizer application on growth, yield, and grain quality of rice. Agriculture 2020, 10, 544. [Google Scholar] [CrossRef]
- Alzamel, N.M.; Taha, E.M.M.; Bakr, A.A.A.; Loutfy, N. Effect of organic and inorganic fertilizers on soil properties, growth yield, and physiochemical properties of sunflower seeds and oils. Sustainability 2022, 14, 12928. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- European Council. Council Regulation (EC) No. 834/2007 of 28 June 2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (ECC) No. 2092/91. European Union: Brussels, Belgium, 2007; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32007R0834 (accessed on 18 January 2023).
- European Commission. Commission Regulation (EC) No. 889/2008 Laying down Detailed Rules for the Implementation of Comission Regulation (EC) No. 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and Control. European Union: Brussels, Belgium, 2008; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008R0889 (accessed on 18 January 2023).
- Escribano, A.J. Organic feed: A bottleneck for the development of the livestock sector and its transition to sustainability? Sustainability 2018, 10, 2393. [Google Scholar] [CrossRef] [Green Version]
- Cakaloglu, B.; Ozyurt, V.H.; Otles, S. Cold press in oil extraction. A review. Ukr. Food J. 2018, 7, 640–654. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Sánchez, J.E.; Yáñez, J.; Beltranena, E.; Cervantes, M.; Morales, A.; Zijlstra, R.T. Nutrient digestibility of canola co-products for grower pigs. Anim. Feed. Sci. Technol. 2016, 222, 7–16. [Google Scholar] [CrossRef]
- Roy, A.; Deshmukh, R. Cold-Pressed Oil Market: Global Opportunity Analysis and Industry Forecast, 2019–2026. 2019. Allied Market Research. Available online: https://www.alliedmarketresearch.com/cold-pressed-oil-market (accessed on 18 January 2023).
- Rakita, S.; Kokić, B.; Manoni, M.; Mazzoleni, S.; Lin, P.; Luciano, A.; Ottoboni, M.; Cheli, F.; Pinotti, L. Cold-pressed oilseed cakes as alternative and sustainable feed ingredients: A review. Foods 2023, 12, 432. [Google Scholar] [CrossRef]
- Institute for Environmental Research, National Observatory of Athens (IERSD/NOA). Available online: https://meteosearch.meteo.gr/data/index.cfm (accessed on 17 January 2023).
- Kakabouki, I.; Tataridas, A.; Mavroeidis, A.; Kousta, A.; Roussis, I.; Katsenios, N.; Efthimiadou, A.; Papastylianou, P. Intro-duction of alternative crops in the Mediterranean to satisfy EU Green Deal goals. A review. Agron. Sustain. Dev. 2021, 41, 71. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, Association of Official Analytical Chemists, 15th ed.; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- Heleno, S.A.; Barros, L.; Sousa, M.J.; Martins, A.; Ferreira, I.C.F.R. Study and characterization of selected nutrients in wild mushrooms from Portugal by gas chromatography and high-performance liquid chromatography. Microchem. J. 2009, 93, 195–199. [Google Scholar] [CrossRef]
- Kisic, I.; Basic, F.; Birkas, M.; Jurisic, A.; Bicanic, V. Crop yield and plant density under different tillage systems. Agric. Conspec. Sci. 2010, 75, 1–7. [Google Scholar]
- Valujeva, K.; Pilecka-Ulcugaceva, J.; Skiste, O.; Liepa, S.; Lagzdins, A.; Grinfelde, I. Soil tillage and agricultural crops affect greenhouse gas emissions from Cambic Calcisol in a temperate climate. Acta Agric. Scand. B Soil Plant Sci. 2022, 72, 835–846. [Google Scholar] [CrossRef]
- Abdullah, A. Minimum tillage and residue management increase soil water content, soil organic matter and canola seed yield and seed oil content in the semiarid areas of Northern Iraq. Soil Till. Res. 2014, 144, 150–155. [Google Scholar] [CrossRef]
- Seddaiu, G.; Iocola, I.; Farina, R.; Orsini, R.; Iezzi, G.; Roggero, P.P. Long term effects of tillage practices and N fertilization in rainfed Mediterranean cropping systems: Durum wheat, sunflower and maize grain yield. Eur. J. Agron. 2016, 77, 166–178. [Google Scholar] [CrossRef]
- Torabi, H.; Naghdibadib, H.A.; Omidi, H.; Amirshekaria, H.; Mohammad, M. Effects of soil tillage, canola (Brassica napus L.) cultivars and planting date on canola yield, and oil and some biological and physical properties of soil. Arch. Agron. Soil Sci. 2008, 54, 175–188. [Google Scholar] [CrossRef]
- Cheţan, F.; Rusu, T.; Cheţan, C.; Urdă, C.; Rezi, R.; Şimon, A.; Bogdan, I. Influence of soil tillage systems on the yield and weeds infestation in the soybean crop. Land 2022, 11, 1708. [Google Scholar] [CrossRef]
- Hocking, P.J.; Mead, J.A.; Good, A.J.; Diffey, S.M. The response of canola (Brassica napus L.) to tillage and fertilizer placement in contrasting environments in southern New South Wales. Aust. J. Exp. Agric. 2003, 43, 1323–1335. [Google Scholar] [CrossRef]
- Roper, M.; Ward, P.; Keulen, A.; Hill, J. Under no-tillage and stubble retention, soil water content and crop growth are poorly related to soil water repellency. Soil Till. Res. 2013, 126, 143–150. [Google Scholar] [CrossRef]
- Campbell, M.; Rossi, A.; Erskine, W. Camelina (Camelina sativa (L.) Crantz): Agronomic potential in Mediterranean environments and diversity for biofuel and food uses. Crop Pasture Sci. 2013, 64, 388–398. [Google Scholar] [CrossRef]
- Schillinger, W. Camelina: Long-term cropping systems research in a dry Mediterranean climate. Field Crops Res. 2019, 235, 87–94. [Google Scholar] [CrossRef]
- Duong, T.; Penfold, C.; Marschner, P. Amending soils of different texture with six compost types: Impact on soil nutrient availability, plant growth and nutrient uptake. Plant Soil 2012, 354, 197–209. [Google Scholar] [CrossRef]
- Adugna, G. A review on impact of compost on soil properties, water use and crop productivity. Agric. Sci. Res. J. 2018, 4, 93–104. [Google Scholar]
- Gao, J.; Thelen, K.D.; Min, D.H.; Smith, S.; Hao, X.; Gehl, R. Effects of manure and fertilizer applications on canola oil content and fatty acid composition. Agron. J. 2010, 102, 790–797. [Google Scholar] [CrossRef]
- Angelopoulou, F.; Tsiplakou, E.; Bilalis, D. Tillage intensity and compost application effects on organically grown camelina productivity, seed and oil quality. Not. Bot. Horti Agrobot. Cluj Napoca 2020, 48, 2153–2166. [Google Scholar] [CrossRef]
- Sandrakirana, R.; Arifin, Z. Effect of organic and chemical fertilizers on the growth and production of soybean (Glycine max) in dry land. Rev. Fac. Nac. Agron. Medellín. 2021, 74, 9643–9653. [Google Scholar] [CrossRef]
- Juodka, R.; Nainiene, R.; Juškiene, V.; Juška, R.; Leikus, R.; Kadžiene, G.; Stankevičiene, D. Camelina (Camelina sativa (L.) Crantz) as Feedstuffs in Meat Type Poultry Diet: A Source of Protein and n-3 Fatty Acids. Animals 2022, 12, 295. [Google Scholar] [CrossRef]
- Wilhelm, W.W.; Wortman, S.C. Tillage and rotation interactions for corn and soybean grain yield as affected by precipitation and air temperature. Agron. J. 2004, 96, 425. [Google Scholar] [CrossRef] [Green Version]
- Spoljar, A.; Kisic, I.; Birkas, M.; Kvaternjak, I.; Marencic, D.; Orehovacki, V. Influence of tillage on soil properties, yield and protein content in maize and soybean grain. J. Environ. Prot. Ecol. 2009, 10, 1013–1031. [Google Scholar]
- Cociu, A.I.; Alionte, E. Effect of different tillage systems on grain yield and its quality of winter wheat, maize and soybean under different weather conditions. Rom. Agric. Res. 2017, 34, 59–67. [Google Scholar]
- Quemada, M.; Gabriel, J.L. Approaches for increasing nitrogen and water use efficiency simultaneously. Glob. Food Sec. 2016, 9, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Bulbul, T.; Rahmann, A.; Ozdemir, V. Effect of false flax meal on certain growth serum and meat parameters of Japanese quails. J. Anim. Plant Sci. 2015, 25, 1245–1250. [Google Scholar]
- Banaszkiewicz, T. Nutritional Value of Soybean Meal. In Soybean and Nutrition; El-Shemy, H., Ed.; IntechOpen: Rijeka, Croatia, 2011; pp. 1–20. Available online: https://www.intechopen.com/books/soybean-and-nutrition/nutritional-value-of-soybean-meal (accessed on 22 January 2023).
- Urda, C.; Suciu, L.; Mureșanu, F.; Pacurar, L.; Tritean, N.; Negrea, A.; Crişan, I.; Rezi, R.; Russu, F.; Tarau, A. Influence of soil tillage system, fertilizer and treatment applied to seeds on soybean chemical composition. Rom. J. Plant Prot. 2021, 14, 17–23. [Google Scholar] [CrossRef]
- Jariene, E.; Danilcenko, H.; Kulaitienė, J.; Gajewski, M. Effect of fertilizers on oil pumpkin seeds crude fat, fibre and protein quantity. Agron. Res. 2007, 5, 43–49. [Google Scholar]
- Krachunov, I. Estimation of energy feeding value of forages for ruminants II. Energy prediction through crude fiber content. J. Mt. Agric. Balk. 2007, 10, 122–134. [Google Scholar]
- Kalmendal, R.; Wall, H. Effects of a high oil and fibre diet and supplementary roughage on performance, injurious pecking and foraging activities in two layer hybrids. Br. Poult. Sci. 2012, 53, 153–161. [Google Scholar] [CrossRef]
- Barker, D.W.; Sawyer, J.E. Nitrogen application to soybean at early reproductive development. Agron. J. 2005, 97, 615–619. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.; Serson, W.R.; Orlowski, J.M.; McCoy, J.M.; Golden, B.R.; Bellaloui, N. Nitrogen sources and rates affect soybean seed composition in Mississippi. Agronomy 2017, 7, 77. [Google Scholar] [CrossRef] [Green Version]
- Bobrecka-Jamro, D.; Jarecki, W.; Buczek, J. 2018. Response of soya bean to different nitrogen fertilization levels. J. Elem. 2018, 23, 559–568. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: New York, NY, USA, 1994. [Google Scholar]
- Roussis, I.; Kakabouki, I.; Tsiplakou, E.; Bilalis, D. Influence of plant density and fertilization on yield and crude protein of Nigella sativa L.: An alternative forage and feed source. In Nigella sativa: Properties, Uses and Effects; Berghuis, S., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2020; pp. 145–180. [Google Scholar]
- Pereira, J.R.; Neres, M.A.; Sandini, I.E.; Fluck, A.C.; Costa, O.A.D.; Sartor, L.R. Chemical compounds and gas production ki-netics of annual ryegrass hay in distinct nitrogen levels and cutting heights. Turk. J. Vet. Anim. Sci. 2020, 44, 1243–1249. [Google Scholar] [CrossRef]
- Leite, R.G.; Cardoso, A.D.S.; Fonseca, N.V.B.; Silva, M.L.C.; Tedeschi, L.O.; Delevatti, L.M.; Ruggieri, A.C.; Reis, R.A. Effects of nitrogen fertilization on protein and carbohydrate fractions of Marandu palisadegrass. Sci. Rep. 2021, 11, 14786. [Google Scholar] [CrossRef]
- Bailoni, L.; Bortolozzo, A.; Mantovani, R.; Simonetto, A.; Schiavon, S.; Bittante, G. Feeding dairy cows with full fat extruded or toasted soybean seeds as replacement of soybean meal and effects on milk yield, fatty acid profile and CLA content. Ital. J. Anim. Sci. 2004, 3, 243–258. [Google Scholar] [CrossRef] [Green Version]
- Juodka, R.; Juska, R.; Juskiene, V.; Leikus, R.; Stankeviciene, D.; Nainiene, R. The effect of feeding with hemp and Camelina cakes on the fatty acid profile of duck muscles. Arch. Anim. Breed. 2018, 61, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Rakow, G.; Raney, G. In Present Status and Future Perspectives of Breeding for Seed Quality in Brassica Oilseed Crops. In Proceedings of the 11th International Rapeseed Congress, Copenhagen, Denmark, 6–10 July 2003. [Google Scholar]
- Gesch, R.W.; Cermak, S.C. Sowing date and tillage effects on fall-seeded Camelina in the Northern Corn Belt. Agron. J. 2011, 103, 980–987. [Google Scholar] [CrossRef] [Green Version]
- Martinez, S.; Gabriel, J.L.; Alvarez, S.; Capuano, A.; Delgado, M.d.M. Integral assessment of organic fertilization on a Camelina sativa rotation under Mediterranean conditions. Agriculture 2021, 11, 355. [Google Scholar] [CrossRef]
- Obour, A.K.; Obeng, E.; Mohammed, Y.A.; Ciampitti, I.A.; Durrett, T.P.; Aznar-Moreno, J.A.; Chen, C. Camelina seed yield and fatty acids as influenced by genotype and environment. Agron. J. 2017, 109, 947–956. [Google Scholar] [CrossRef] [Green Version]
- Halle, I.; Schöne, F. Influence of rapeseed cake, linseed cake and hemp seed cake on laying performance of hens and fatty acid composition of egg yolk. JCF 2013, 8, 185–193. [Google Scholar] [CrossRef]
- Mierlita, D. Effects of diets containing hemp seeds or hemp cake on fatty acid composition and oxidative stability of sheep milk. S. Afr. J. Anim. Sci. 2018, 48, 504–515. [Google Scholar] [CrossRef]
Mean Temperature (°C) | Precipitation (mm) | |||
---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | |
April | 10.4 | 13.6 | 6.6 | 3.4 |
May | 16.0 | 14.9 | 49.6 | 33.0 |
June | 18.3 | 21.7 | 78.0 | 135.0 |
July | 21.7 | 22.6 | 8.0 | 45.2 |
Parameter | Vermicompost | Compost |
---|---|---|
pH (1:2 H2O) | 7.22 | 6.61 |
Total organic substance (%) | 52.0 | 32.9 |
N (g·kg−1) | 20.1 | 70.3 |
P (g·kg−1) | 6.5 | 17.4 |
K (g·kg−1) | 12.45 | 58.10 |
Mg (g·kg−1) | 6.03 | 12.06 |
Source of Variance | Df | Seed Yield | Seed Cake Extraction Rate | Seed Cake Yield | Dry Matter Content | Crude Protein | Crude Fat |
---|---|---|---|---|---|---|---|
Year (Y) | 1 | 30.917 *** | 15.827 ** | 18.111 ** | 14.915 ** | 1.544 ns | 18.354 ** |
Tillage (T) | 1 | 3.799 ns | 0.199 ns | 4.057 ns | 0.271 ns | 30.937 *** | 37.161 *** |
Fertilization (F) | 2 | 241.461 *** | 2.063 ns | 214.628 *** | 61.134 *** | 11.480 ** | 14.677 *** |
Y × T | 1 | 0.124 ns | 0.090 ns | 0.024 ns | 6.977 * | 0.065 ns | 5.047 * |
Y × F | 2 | 0.266 ns | 0.470 ns | 0.129 ns | 1.137 ns | 0.021 ns | 1.041 ns |
T × F | 2 | 1.373 ns | 0.041 ns | 1.330 ns | 0.127 ns | 0.961 ns | 3.372 * |
Y × T × F | 2 | 0.267 ns | 0.581 ns | 0.073 ns | 0.223 ns | 0.924 ns | 1.001 ns |
Source of Variance | Df | Crude Fiber | Crude Ash | Total Carbohydrate | Residual Oil Content | Palmitic Acid (C16:0) | Stearic Acid (C18:0) |
Year (Y) | 1 | 0.052 ns | 0.242 ns | 19.345 *** | 34.744 *** | 22.318 *** | 5.245 * |
Tillage (T) | 1 | 0.976 ns | 0.069 ns | 0.450 ns | 2.959 ns | 0.018 ns | 0.583 ns |
Fertilization (F) | 2 | 20.748 *** | 3.044 ns | 29.517 *** | 24.982 *** | 20.287 *** | 0.094 ns |
Y × T | 1 | 0.786 ns | 0.945 ns | 3.439 ns | 0.005 ns | 0.049 ns | 0.065 ns |
Y × F | 2 | 0.374 ns | 0.562 ns | 0.901 ns | 4.688 ns | 3.593 ns | 1.058 ns |
T × F | 2 | 1.459 ns | 0.009 ns | 4.978 * | 0.062 ns | 0.111 ns | 1.446 ns |
Y × T × F | 2 | 0.585 ns | 0.410 ns | 2.391 ns | 0.144 ns | 0.821 ns | 0.281 ns |
Source of Variance | Df | Total Saturated Fatty Acids (SAFA) | Oleic Acid (C18:1 n-9) | Cis-11-Eicosenoic Acid (C20:1) | Erucic Acid (C22:1) | Total Monounsaturated Fatty Acids (MUFA) | |
Year (Y) | 1 | 9.974 ** | 376.113 *** | 1.468 ns | 0.048 ns | 85.196 *** | |
Tillage (T) | 1 | 0.236 ns | 0.002 ns | 26.996 *** | 9.809 ** | 19.186 *** | |
Fertilization (F) | 2 | 16.618 *** | 10.187 ** | 24.657 *** | 21.363 *** | 32.930 *** | |
Y × T | 1 | 0.007 ns | 0.509 ns | 0.834 ns | 0.334 ns | 0.903 ns | |
Y × F | 2 | 2.523 ns | 1.667 ns | 0.078 ns | 0.024 ns | 0.653 ns | |
T × F | 2 | 0.802 ns | 0.072 ns | 0.068 ns | 1.422 ns | 0.224 ns | |
Y × T × F | 2 | 1.212 ns | 0.540 ns | 0.017 ns | 1.019 ns | 0.148 ns | |
Source of Variance | Df | Linoleic Acid (C18:2 n-6) | α-Linolenic Acid (C18:3 n-3) | Total Polyunsaturated Fatty Acids (PUFA) | PUFA/SAFA | n-6/n-3 | |
Year (Y) | 1 | 17.091 ** | 0.078 ns | 1.856 ns | 6.542 * | 3.681 ns | |
Tillage (T) | 1 | 0.323 ns | 2.461 ns | 3.147 ns | 1.720 ns | 0.876 ns | |
Fertilization (F) | 2 | 17.138 *** | 13.177 *** | 26.723 *** | 9.590 ** | 1.650 ns | |
Y × T | 1 | 2.159 ns | 0.602 ns | 0.033 ns | 0.069 ns | 1.369 ns | |
Y × F | 2 | 8.548 ns | 0.551 ns | 0.344 ns | 0.545 ns | 2.829 ns | |
T × F | 2 | 1.278 ns | 2.663 ns | 3.040 ns | 1.227 ns | 1.712 ns | |
Y × T × F | 2 | 0.734 ns | 0.475 ns | 1.036 ns | 1.601 ns | 0.095 ns |
Treatment | Seed Yield (kg·ha−1) | Seed Cake Extraction Rate (%) | Seed Cake Yield (kg·ha−1) |
---|---|---|---|
2015 | |||
Tillage System | |||
CT | 759.4 A | 62.20 A | 472.3 A |
MT | 804.3 A | 62.16 A | 499.9 A |
Fertilization | |||
Control | 558.9 c | 62.37 a | 348.6 c |
Vermicompost | 703.1 b | 62.21 a | 437.4 b |
Compost | 1083.6 a | 61.95 a | 671.3 a |
Source of Variation | |||
FTillage | 2.410 ns | 0.059 ns | 2.532 ns |
FFertilization | 117.108 *** | 1.713 ns | 120.901 *** |
FTillage × Fertilization | 1.289 ns | 1.362 ns | 1.093 ns |
2016 | |||
Tillage System | |||
CT | 657.8 A | 61.07 A | 401.7 A |
MT | 688.9 A | 60.84 A | 419.1 A |
Fertilization | |||
Control | 462.5 c | 61.33 a | 283.7 c |
Vermicompost | 602.5 b | 61.22 a | 368.9 b |
Compost | 955.2 a | 60.31 a | 576.1 a |
Source of Variation | |||
FTillage | 1.416 ns | 0.154 ns | 1.617 ns |
FFertilization | 125.452 *** | 1.221 ns | 95.586 *** |
FTillage×Fertilization | 0.247 ns | 0.207 ns | 0.365 ns |
Treatment | Dry Matter Content (%) | Crude Protein (% DM) | Crude Fat (% DM) | Crude Fiber (% DM) | Crude Ash (% DM) | Total Carbohydrate (% DM) | Residual Oil Content (% DM) |
---|---|---|---|---|---|---|---|
2015 | |||||||
Tillage System | |||||||
CT | 93.07 A | 35.60 A | 15.47 B | 7.46 A | 5.48 A | 43.46 A | 13.82 A |
MT | 93.89 A | 33.99 B | 17.93 A | 7.48 A | 5.53 A | 42.55 A | 13.87 A |
Fertilization | |||||||
Control | 92.28 c | 33.94 b | 15.53 b | 7.17 b | 5.44 a | 45.09 a | 13.75 b |
Vermicompost | 93.11 b | 34.91 ab | 16.69 ab | 7.51 ab | 5.50 a | 42.91 b | 13.86 ab |
Compost | 93.54 a | 35.53 a | 17.88 a | 7.74 a | 5.57 a | 41.02 c | 13.93 a |
Source of Variation | |||||||
FTillage | 2.459 ns | 15.786 ** | 27.289 ** | 0.003 ns | 0.321 ns | 3.526 ns | 2.197 ns |
FFertilization | 42.594 *** | 5.217 * | 8.297 * | 8.175 * | 0.706 ns | 20.972 ** | 6.503 ** |
FTillage × Fertilization | 0.133 ns | 0.392 ns | 1.566 ns | 0.407 ns | 0.197 ns | 2.611 ns | 0.066 ns |
2016 | |||||||
Tillage System | |||||||
CT | 93.43 A | 35.18 A | 14.87 B | 7.39 A | 5.49 A | 44.37 A | 14.02 A |
MT | 93.17 A | 33.71 B | 16.01 A | 7.52 A | 5.58 A | 44.79 A | 14.09 A |
Fertilization | |||||||
Control | 92.75 b | 33.54 b | 14.50 b | 7.23 c | 5.43 a | 46.53 a | 13.83 c |
Vermicompost | 93.46 a | 34.64 ab | 15.79 a | 7.44 b | 5.48 a | 44.10 b | 14.07 b |
Compost | 93.70 a | 35.16 a | 16.02 a | 7.69 a | 5.72 a | 43.10 b | 14.28 a |
Source of Variation | |||||||
FTillage | 4.604 ns | 15.173 ** | 10.223 * | 4.117 ns | 0.627 ns | 0.639 ns | 1.160 ns |
FFertilization | 21.482 ** | 6.367 * | 7.087 * | 19.354 ** | 2.508 ns | 10.450 * | 18.584 ** |
FTillage × Fertilization | 0.210 ns | 1.579 ns | 3.279 ns | 3.289 ns | 0.217 ns | 4.570 ns | 0.119 ns |
Saturated Fatty Acids (SAFA) | Monounsaturated Fatty Acids (MUFA) | Polyunsaturated Fatty Acids (PUFA) | PUFA/SAFA | n-6/n-3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Palmitic Acid (C16:0) (% DM) | Stearic Acid (C18:0) (% DM) | Total SAFA (% DM) | Oleic Acid (C18:1 n-9) (% DM) | Cis-11- EiCosenoic Acid (C20:1) (% DM) | Erucic Acid (C22:1) (% DM) | Total MUFA (% DM) | Linoleic Acid (C18:2 n-6) (% DM) | α-Linolenic Acid (C18:3 n-3) (% DM) | Total PUFA (% DM) | |||
2015 | Tillage System | |||||||||||
CT | 7.22 A | 2.54 A | 9.76 A | 18.27 A | 13.41 A | 2.17 A | 33.85 A | 22.37 A | 29.31 A | 51.67 A | 5.29 A | 0.76 A |
MT | 7.21 A | 2.56 A | 9.78 A | 18.24 A | 13.11 B | 2.10 B | 33.45 B | 22.29 A | 29.80 A | 52.09 A | 5.33 A | 0.74 A |
Fertilization | ||||||||||||
Control | 7.15 b | 2.54 a | 9.69 b | 18.38 a | 13.49 a | 2.23 a | 34.10 a | 22.23 b | 28.79 b | 51.03 b | 5.26 a | 0.77 a |
Vermicompost | 7.28 a | 2.56 a | 9.85 a | 18.29 ab | 13.20 b | 2.04 c | 33.53 b | 22.33 ab | 29.56 ab | 51.88 ab | 5.27 a | 0.76 a |
Compost | 7.23 ab | 2.55 a | 9.78 ab | 18.09 b | 13.09 b | 2.13 b | 33.31 b | 22.42 a | 30.32 a | 52.74 a | 5.39 a | 0.74 a |
Source of Variation | ||||||||||||
FTillage | 0.002 ns | 0.581 ns | 0.072 ns | 0.172 ns | 11.453 * | 8.603 * | 9.483 * | 4.008 ns | 1.860 ns | 1.273 ns | 0.796 ns | 1.976 ns |
FFertilization | 6.215 * | 0.503 ns | 8.101 * | 5.812 * | 6.865 * | 20.167 ** | 12.732 ** | 7.786 * | 5.865 * | 7.053 * | 3.597 ns | 3.098 ns |
FTillage × Fertilization | 0.444 ns | 1.016 ns | 1.386 ns | 0.302 ns | 0.033 ns | 3.702 ns | 0.242 ns | 1.649 ns | 0.660 ns | 0.463 ns | 0.315 ns | 0.951 ns |
2016 | Tillage System | |||||||||||
CT | 7.30 A | 2.53 A | 9.83 A | 17.47 A | 13.43 A | 2.16 A | 33.08 A | 21.89 A | 29.69 A | 51.48 A | 5.23 A | 0.74 A |
MT | 7.31 A | 2.52 A | 9.84 A | 17.50 A | 13.21 B | 2.11 A | 32.81 B | 22.06 A | 29.53 A | 51.76 A | 5.26 A | 0.73 A |
Fertilization | ||||||||||||
Control | 7.21 b | 2.54 a | 9.75 b | 17.56 a | 13.58 a | 2.22 a | 33.36 a | 21.53 b | 28.96 b | 50.49 c | 5.18 b | 0.75 a |
Vermicompost | 7.33 a | 2.53 a | 9.86 a | 17.47 ab | 13.24 b | 2.04 b | 32.75 b | 21.84 b | 29.82 a | 51.66 b | 5.24 ab | 0.73 a |
Compost | 7.39 a | 2.52 a | 9.91 a | 17.42 b | 13.15 b | 2.16 a | 32.73 b | 22.55 a | 30.07 a | 52.62 a | 5.31 a | 0.74 a |
Source of Variation | ||||||||||||
FTillage | 0.109 ns | 0.117 ns | 0.186 ns | 0.656 ns | 27.727 ** | 3.430 ns | 11.721 * | 1.093 ns | 0.602 ns | 2.551 ns | 1.243 ns | 0.031 ns |
FFertilization | 26.328 ** | 0.636 ns | 11.509 ** | 6.479 * | 36.536 *** | 7.132 * | 28.910 *** | 13.112 ** | 9.680 * | 33.163 *** | 10.238 * | 1.142 ns |
FTillage × Fertilization | 0.521 ns | 0.740 ns | 0.505 ns | 0.326 ns | 0.085 ns | 0.230 ns | 0.018 ns | 0.971 ns | 4.128 ns | 6.809 ns | 5.277 ns | 0.843 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelopoulou, F.; Roussis, I.; Kakabouki, I.; Mavroeidis, A.; Triantafyllidis, V.; Beslemes, D.; Kosma, C.; Stavropoulos, P.; Tsiplakou, E.; Bilalis, D. Influence of Organic Fertilization and Soil Tillage on the Yield and Quality of Cold-Pressed Camelina [Camelina sativa (L.) Crantz] Seed Cake: An Alternative Feed Ingredient. Appl. Sci. 2023, 13, 3759. https://doi.org/10.3390/app13063759
Angelopoulou F, Roussis I, Kakabouki I, Mavroeidis A, Triantafyllidis V, Beslemes D, Kosma C, Stavropoulos P, Tsiplakou E, Bilalis D. Influence of Organic Fertilization and Soil Tillage on the Yield and Quality of Cold-Pressed Camelina [Camelina sativa (L.) Crantz] Seed Cake: An Alternative Feed Ingredient. Applied Sciences. 2023; 13(6):3759. https://doi.org/10.3390/app13063759
Chicago/Turabian StyleAngelopoulou, Foteini, Ioannis Roussis, Ioanna Kakabouki, Antonios Mavroeidis, Vassilios Triantafyllidis, Dimitrios Beslemes, Chariklia Kosma, Panteleimon Stavropoulos, Eleni Tsiplakou, and Dimitrios Bilalis. 2023. "Influence of Organic Fertilization and Soil Tillage on the Yield and Quality of Cold-Pressed Camelina [Camelina sativa (L.) Crantz] Seed Cake: An Alternative Feed Ingredient" Applied Sciences 13, no. 6: 3759. https://doi.org/10.3390/app13063759
APA StyleAngelopoulou, F., Roussis, I., Kakabouki, I., Mavroeidis, A., Triantafyllidis, V., Beslemes, D., Kosma, C., Stavropoulos, P., Tsiplakou, E., & Bilalis, D. (2023). Influence of Organic Fertilization and Soil Tillage on the Yield and Quality of Cold-Pressed Camelina [Camelina sativa (L.) Crantz] Seed Cake: An Alternative Feed Ingredient. Applied Sciences, 13(6), 3759. https://doi.org/10.3390/app13063759