Super-Resolution Reconstruction of Depth Image Based on Kriging Interpolation
Abstract
:1. Introduction
2. Depth Image super-resolution Algorithm
2.1. Classical Image Interpolation Methods
2.2. Interpolation Algorithm Based on Kriging Interpolation
3. Fractional-Order Differential Edge Recognition
4. Kriging Interpolation Super-Resolution Algorithm Based on Fractional-Order Differentiation
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.; Lee, H.; Kim, H.; Lee, J.; Yoo, H. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 1569–1582. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a Deep Convolutional Network for Image Super-Resolution. In Computer Vision—ECCV 2014. ECCV 2014; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2014; p. 8692. [Google Scholar] [CrossRef]
- Li, Y.; Su, Y.; Guo, M.; Han, X.; Liu, J.; Vishwasrao, H.D.; Li, X.; Christensen, R.; Sengupta, T.; Moyle, M.W.; et al. Incorporating the image formation process into deep learning improves network performance. Nat. Methods 2022, 19, 1427–1437. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Jia, Y.; Yang, C. A novel interpolation-based image super-resolution algorithm for complex depth images. Opt. Express 2022, 30, 2292–2307. [Google Scholar] [CrossRef]
- Eilers, P.H.C.; Ruckebusch, C. Fast and simple super-resolution with single images. Sci. Rep. 2022, 12, 11241. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, M.; Gachpazan, M.; Amintoosi, M.; Salahshour, S. Fractional derivative approach to sparse super-resolution. Vis. Comput. 2022, 1–18. [Google Scholar] [CrossRef]
- Yarmohammadi, M.; Javadi, S. Piecewise Fractional Interpolation with Application to Fractional Differential Equation. J. Sci. Comput. 2021, 86, 18. [Google Scholar] [CrossRef]
- Chen, X.X.; Qi, C. Single-image super-resolution via low-rank matrix recovery and joint learning. Chin. J. Comput. 2014, 37, 1372–1379. [Google Scholar]
- Mei, K.; Jiang, A.; Li, J.; Liu, B.; Ye, J.; Wang, M. Deep residual refining based pseudo-multi-frame network for effective single image super-resolution. IET Image Process. 2019, 13, 591–599. [Google Scholar] [CrossRef]
- Bätz, M.; Eichenseer, A.; Seiler, J.; Jonscher, M.; Kaup, A. Hybrid super-resolution combining example-based single-image and interpolation-based multi-image reconstruction approaches. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015. [Google Scholar] [CrossRef]
- Bengtsson, T.; Gu, I.Y.H.; Viberg, M.; Lindström, K. Regularized optimization for joint super-resolution and high dynamic range image reconstruction in a perceptually uniform domain. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Kyoto, Japan, 25–30 March 2012. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Liu, E.; Zhao, L.; Wang, Y.F.; Jiang, W. Detail enhancement of image super-resolution based on detail synthesis. Signal Process Image Commun. 2017, 50, 21–33. [Google Scholar] [CrossRef]
- Mathieu, B.; Melchior, P.; Oustaloup, A.; Ceyral, C. Fractional differentiation for edge detection. Signal Process. 2003, 83, 2421–2432. [Google Scholar] [CrossRef]
- Pu, Y.F.; Zhou, J.L.; Yuan, X. Fractional Differential Mask: A Fractional Differential-Based Approach for Multiscale Texture Enhancement. IEEE Trans. Image Process. 2010, 19, 491–511. [Google Scholar] [CrossRef]
- Yu, M.; Yu, K.; Han, T.; Wan, Y.; Zhao, D. Research on application of fractional calculus in signal analysis and processing of stock market. Chaos Solitons Fractals 2020, 131, 109468. [Google Scholar] [CrossRef]
- Hu, J.R.; Pu, Y.F.; Zhou, J.L. Fractional Integral Denoising Algorithm. J. Univ. Electron. Sci. Technol. China 2012, 41, 706–711. [Google Scholar] [CrossRef]
- Chen, L. Fractional integral denoising algorithm of image based on Grümwald-letnikov. J. Shaanxi Univ. Technol. 2018, 2, 39–44. [Google Scholar] [CrossRef]
- Wang, X.Y.; Huang, P.C. Comparative Study of Interpolation Methods of Meteorological Factors Based on GIS. Geomat. Spat. Inf. Technol. 2020, 43, 4, 167–170. [Google Scholar] [CrossRef]
- Wong, D.; Yuan, L.; Perlin, S. Comparison of spatial interpolation methods for the estimation of air quality data. J. Expo Sci. Environ. Epidemiol. 2004, 14, 404–415. [Google Scholar] [CrossRef] [Green Version]
- Jin, G.D.; Liu, Y.C.; Niu, W.J. Comparison between Inverse Distance Weighting Method and Kriging. J. Chang. Univ. Technol. 2003, 24, 53–57. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, Z.; Chen, L.; He, Q. An Improved Spatio-Temporal Kriging Interpolation Algorithm and Its Application in Slope. IEEE Access 2020, 8, 90718–90729. [Google Scholar] [CrossRef]
- Gong, X.P.; Yang, Y.H. Ordinary Kriging algorithm applied for interpolation. J. Northwest Univ. 2008, 27, 2585–2592. [Google Scholar] [CrossRef]
- Zhou, R.; Hu, W.; Luo, G.; Liu, X.; Fan, P. Quantum realization of the nearest neighbor value interpolation method for INEQR. Quantum Inf. Process. 2018, 17, 166. [Google Scholar] [CrossRef]
- Mastyło, M. Bilinear interpolation theorems and applications. J. Funct. Anal. 2013, 265, 185–207. [Google Scholar] [CrossRef]
- Li, P.; Liu, X. Bilinear interpolation method for quantum images based on quantum Fourier transform. Int. J. Quantum Inf. 2018, 16, 1850031. [Google Scholar] [CrossRef]
- Malini, P. Interpolation Techniques in Image Resampling. J. Int. J. Eng. Technol. 2018, 7, 567–570. [Google Scholar] [CrossRef]
- Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Yang, F.; Wan, S.; Di, P. Spherical Lanczos Interpolation in Planar Projection or Format Conversions of Panoramic Videos. IEEE Access 2020, 8, 9655–9667. [Google Scholar] [CrossRef]
- Agathiyan, A.; Gowrisankar, A.; Priyanka, T.M.C. Construction of New Fractal Interpolation Functions through Integration Method. Results Math. Results Math. 2022, 77, 122. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Liu, L.; Zhao, M.; Mei, S. Coupling technology of OpenSURF and Shannon-Cosine wavelet interpolation for locust slice images inpainting. Comput. Electron. Agric. 2022, 198, 107110. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.; Pang, S.; Li, H.; Zhu, B. A robust edge-based template matching algorithm for displacement measurement of compliant mechanisms under scanning electron microscope. Rev. Sci. Instrum. 2021, 92, 033703. [Google Scholar] [CrossRef]
- You, L.; Yang, X.; Pan, J.; Lee, T.Y.; Bian, S.; Qian, K.; Habib, Z.; Sargano, A.B.; Kazmi, I. Fast character modeling with sketch-based PDE surfaces. Multimed. Tools Appl. 2020, 79, 23161–23187. [Google Scholar] [CrossRef]
- Sun, C.; Wang, N.; Jin, S.; Wang, M. Study on spatial interpolation method of marine sediment particle size based on geostatistics. J. Coast. Res. 2020, 108, 125–130. [Google Scholar] [CrossRef]
- Xu, T.; Liu, Y.; Tang, L.; Liu, C. Improvement of Kriging interpolation with learning kernel in environmental variables study. Int. J. Prod. Res. 2022, 60, 1284–1297. [Google Scholar] [CrossRef]
- Choi, S.; Zhou, Q.Y.; Miller, S.; Koltun, V. A Large Dataset of Object Scans. arXiv 2016, arXiv:1602.02481. [Google Scholar] [CrossRef]
- Liang, J.; Chen, P.X.; Wu, M. Research on an Image Denoising Algorithm based on Deep Network Learning. J. Phys. Conf. Ser. 2021, 1802, 032112. [Google Scholar] [CrossRef]
- Xu, L.; Huang, G.; Chen, Q.; Qin, H.; Men, T.; Pu, Y. An improved method for image denoising based on fractional-order integration. Front. Inf. Technol. Electron. Eng. 2020, 21, 1485–1493. [Google Scholar] [CrossRef]
Interpolation Method | Nearest Neighbor Interpolation | Bilinear Interpolation | Resampling Interpolaton | Cubic Interpolation | Lanczos Interpolation |
---|---|---|---|---|---|
PSNR (dB) | 29.795 | 34.154 | 33.570 | 34.515 | 33.654 |
Datasets [35] Number | Fractional-Order Differential Kriging Interpolation | Nearest Neighbor Interpolation | |
---|---|---|---|
PSNR | PSNR | ||
00033 | 0.6 | 33.457 | 29.795 |
03236 | 0.6 | 37.230 | 27.738 |
03528 | 0.6 | 38.598 | 29.868 |
04797 | 0.6 | 47.182 | 26.580 |
05989 | 0.6 | 39.888 | 29.468 |
08343 | 0.6 | 38.391 | 25.008 |
Datasets [35] Number | Fractional-Order Differential Kriging Interpolation | Nearest-Neighbour Interpolation | |
---|---|---|---|
PSNR | PSNR | ||
00033 | 0.6 | 28.828 | 25.385 |
03236 | 0.6 | 32.290 | 23.383 |
03528 | 0.6 | 33.677 | 25.825 |
04797 | 0.6 | 40.595 | 22.456 |
05989 | 0.6 | 34.459 | 25.503 |
08343 | 0.6 | 33.819 | 21.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.; Wang, X.; Wang, C.; Liu, X.; Yu, Y. Super-Resolution Reconstruction of Depth Image Based on Kriging Interpolation. Appl. Sci. 2023, 13, 3769. https://doi.org/10.3390/app13063769
Huang T, Wang X, Wang C, Liu X, Yu Y. Super-Resolution Reconstruction of Depth Image Based on Kriging Interpolation. Applied Sciences. 2023; 13(6):3769. https://doi.org/10.3390/app13063769
Chicago/Turabian StyleHuang, Tingsheng, Xinjian Wang, Chunyang Wang, Xuelian Liu, and Yanqing Yu. 2023. "Super-Resolution Reconstruction of Depth Image Based on Kriging Interpolation" Applied Sciences 13, no. 6: 3769. https://doi.org/10.3390/app13063769
APA StyleHuang, T., Wang, X., Wang, C., Liu, X., & Yu, Y. (2023). Super-Resolution Reconstruction of Depth Image Based on Kriging Interpolation. Applied Sciences, 13(6), 3769. https://doi.org/10.3390/app13063769