On the Melting Thresholds of Semiconductors under Nanosecond Pulse Laser Irradiation
Abstract
:1. Introduction
2. Model Description
3. Results and Discussion
3.1. Silicon
3.2. Germanium
3.3. Gallium Arsenide
3.4. Cadmium Telluride
3.5. Indium Phosphide
3.6. Generalization of the Damage Threshold Data into a Predictive Dependence
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Property | Value | Ref. |
---|---|---|
ρ, g/cm3 | 2.328 | |
Tm, K | 1688 | |
Lm, J/kg | 1.826 × 106 | [62] |
cp, J/kg K | 847.05 + 118.1 × 10−3 T − 155.6 × 105 T−2 | [42] |
κ, W/mK | 97269 T−1.165 (300 < T < 1000) 3.36 × 10−5 T2 − 9.59 × 10−2 T + 92.25 (1000 < T < Tm) | [42] |
Property | Value, 532 nm | Ref. | Value, 694 nm | Ref. |
---|---|---|---|---|
n | 4.152 | [48] | 3.79 | [48] |
k | 0.051787 | [48] | 0.013 | [48] |
R | 0.374 | [43] | 0.34 + 5 × 10−5 (T − 300) | [43] |
α, 1/m | 5.02 × 105 exp (T/430) | [43] | 1.34 × 105 exp (T/427) | [43] |
Property | Value, 532 nm | Ref. | Value, 694 nm | Ref. |
---|---|---|---|---|
n | 3.212 | [45] | 3.952 | [44] |
k | 4.936 | [45] | 5.417 | [44] |
R | 0.693 | Calculated | 0.707 | Calculated |
α, 1/m | 1.1659 × 108 | Calculated | 9.804 × 107 | Calculated |
Property | Value | Ref. |
---|---|---|
ρ, g/cm3 | 5.327 | |
Tm, K | 1211.4 | |
Lm, J/kg | 5.1 × 105 | [50] |
cp, J/kg K | 1.17 × 10−1 T + 293 | [50] |
κ, W/mK | 18,000/T | [50] |
Property | Value | Ref. |
---|---|---|
ρ, g/cm3 | 5.32 | |
Tm, K | 1511 | |
Lm, J/kg | 7.11 × 105 | |
cp, J/kg K | 8.76 × 10−2 T + 308.16 | [8] |
κ, W/mK | 30,890 T−1.141 | [8] |
Property | Value, 308 nm | Ref. | Value, 532 nm | Ref. | Value, 694 nm | Ref. |
---|---|---|---|---|---|---|
n | 3.7 | [48] | 4.13 | [48] | 3.78 | [48] |
k | 1.9 | [48] | 0.336 | [48] | 0.15 | [48] |
R | 0.42 | Calculated | 0.37 | Calculated | 0.338 | Calculated |
α, 1/m | 7.7 × 107 | Calculated | 8.04 × 106 | Calculated | 2.687 × 106 | Calculated |
Property | Value, 308 nm | Ref. | Value, 694 nm | Ref. |
---|---|---|---|---|
R | 0.46 | [8] | 0.67 | [13] |
α, 1/m | 0.83 × 108 | [63] | 2.687 × 106 | Taken the same as for solid-state |
Property | Value | Ref. |
---|---|---|
ρ, g/cm3 | 5.85 | |
Tm, K | 1365 | |
Lm, J/kg | 2.09 × 105 | [59] |
cp, J/kg K | 3.6 × 10−2 T + 205 | [59] |
κ, W/mK | 1507/T | [57] |
Property | Value, 248 nm | Ref. | Value, 694 nm | Ref. |
---|---|---|---|---|
n | 2.63 | [60] | 3.037 | [60] |
k | 2.13 | [60] | 0.286 | [60] |
R | 0.406 | Calculated | 0.258 | Calculated |
α, 1/m | 1.1 × 108 | Calculated | 5.179 × 106 | Calculated |
Property | Value | Ref. |
---|---|---|
ρ, g/cm3 | 4.81 | |
Tm, K | 1335 | |
Lm, J/kg | 3.4 × 105 | [64] |
cp, J/kg K | 2.33 × 10−2 T + 347 | [61] |
κ, W/mK | 1.215 × 105 T−1.324 | [61] |
References
- Young, R.T.; Wood, R.F.; Narayan, J.; White, C.W.; Christie, W.H. Pulsed laser techniques for solar cell processing. IEEE Trans. Electron Devices 1980, 27, 807–815. [Google Scholar] [CrossRef]
- Thompson, M.O.; Galvin, G.J.; Mayer, J.W.; Peercy, P.S.; Poate, J.M.; Jacobson, D.C.; Cullis, A.G.; Chew, N.G. Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation. Phys. Rev. Lett. 1984, 52, 2360–2363. [Google Scholar] [CrossRef]
- Volodin, V.A.; Cheng, Y.; Bulgakov, A.V.; Levy, Y.; Beránek, J.; Nagisetty, S.S.; Zukerstein, M.; Popov, A.A.; Bulgakova, N.M. Single-shot selective femtosecond and picosecond infrared laser crystallization of an amorphous Ge/Si multilayer stack. Opt. Laser Technol. 2023, 161, 109161. [Google Scholar] [CrossRef]
- Vega, F.; Serna, R.; Afonso, C.N.; Bermejo, D.; Tejeda, G. Relaxation and crystallization kinetics of amorphous germanium films by nanosecond laser pulses. J. Appl. Phys. 1994, 75, 7287–7291. [Google Scholar] [CrossRef] [Green Version]
- De Unamuno, S.; Fogarassy, E. A thermal description of the melting of c- and a-silicon under pulsed excimer lasers. Appl. Surf. Sci. 1989, 36, 1–11. [Google Scholar] [CrossRef]
- Ong, C.K.; Tan, H.S.; Sin, E.H. Calculations of melting threshold energies of crystalline and amorphous materials due to pulsed-laser irradiation. Mater. Sci. Eng. 1986, 79, 79–85. [Google Scholar] [CrossRef]
- Baeri, P.; Campisano, S.U.; Foti, G.; Rimini, E. A melting model for pulsing-laser annealing of implanted semiconductors. J. Appl. Phys. 1979, 50, 788–797. [Google Scholar] [CrossRef]
- Kim, T.; Pillai, M.R.; Aziz, M.J.; Scarpulla, M.A.; Dubon, O.D.; Yu, K.M.; Beeman, J.W.; Ridgway, M.C. Heat flow model for pulsed laser melting and rapid solidification of ion implanted GaAs. J. Appl. Phys. 2010, 108, 013508. [Google Scholar] [CrossRef]
- Jellison, G.E.; Lowndes, D.H.; Mashburn, D.N.; Wood, R.F. Time-resolved reflectivity measurements on silicon and germanium using a pulsed excimer KrF laser heating beam. Phys. Rev. B 1986, 34, 2407–2415. [Google Scholar] [CrossRef]
- Ivlev, G.D.; Malevich, V.L. Heating and melting of single-crystal germanium by nanosecond laser pulses. Soviet J. Quant. Electron. 1988, 18, 1626–1627. [Google Scholar] [CrossRef]
- Solis, J.; Afonso, C.N. Early stages of melting in Si under nanosecond laser pulse irradiation: A time-resolved study. J. Appl. Phys. 1991, 69, 2105–2111. [Google Scholar] [CrossRef] [Green Version]
- Garcia, B.J.; Martinez, J.; Piqueras, J. Laser melting of GaAs covered with thin metal layers. Appl. Phys. A 1990, 51, 437–445. [Google Scholar] [CrossRef]
- Pospieszczyk, A.; Harith, M.A.; Stritzker, B. Pulsed laser annealing of GaAs and Si: Combined reflectivity and time-of-flight measurements. J. Appl. Phys. 1983, 54, 3176–3182. [Google Scholar] [CrossRef]
- Lv, X.; Pan, Y.; Jia, Z.; Li, Z.; Zhang, H.; Ni, X. Laser-induced damage threshold of silicon under combined millisecond and nanosecond laser irradiation. J. Appl. Phys. 2017, 121, 113102. [Google Scholar] [CrossRef]
- Medvids, A.; Kaupuzs, J.; Onufrijevs, P.; Grase, A.L.; Zukuls, A. Colossal laser ablation threshold of Ge crystal due to formation of GeO2 nanolayer: “Lid Effect”-Subsurface boiling mechanisM. Opt. Laser Technol. 2019, 119, 105630. [Google Scholar] [CrossRef]
- Komarov, F.F.; Nechaev, N.S.; Ivlev, G.D.; Vlasukova, L.A.; Parkhomenko, I.N.; Wendler, E.; Romanov, I.A.; Berencéne, Y.; Pilko, V.V.; Zhigulin, D.V.; et al. Structural and optical properties of Si hyperdoped with Te by ion implantation and pulsed laser annealing. Vacuum 2020, 178, 109434. [Google Scholar] [CrossRef]
- Kiyota, H.; Hara, K.; Jankowski, M.; Fejer, M.M. Numerical simulation and validation of subsurface modification and crack formation induced by nanosecond-pulsed laser processing in monocrystalline silicon. J. Appl. Phys. 2020, 127, 085106. [Google Scholar] [CrossRef]
- Casquero, N.; Ruiz de Galarreta, C.; Fuentes-Edfuf, Y.; Solis, J.; Wright, C.D.; Siegel, J. Propagation dynamics of the solid–liquid interface in Ge upon ns and fs laser irradiation. J. Phys. D Appl. Phys. 2022, 55, 365104. [Google Scholar] [CrossRef]
- Chaoui, N.; Siegel, J.; Solis, J.; Afonso, C.N. Reflectivity of crystalline Ge and Si at the melting temperature measured in real time with subnanosecond temporal resolution. J. Appl. Phys. 2001, 89, 3763–3767. [Google Scholar] [CrossRef] [Green Version]
- Huynh, T.T.D.; Semmat, N. In situ probing of pulsed laser melting and laser-induced periodic surface structures formation by dynamic reflectivity. Surf. Topogr. Metrol. Prop. 2017, 5, 035003. [Google Scholar] [CrossRef]
- Boneberg, J.; Bischof, J.; Leiderer, P. Nanosecond time-resolved reflectivity determination of the melting of metals upon pulsed laser annealing. Opt. Commun. 2000, 174, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Toulemonde, M.; Unamuno, S.; Heddache, R.; Lampert, M.O.; Hage-Ali, M.; Siffert, P. Time-resolved reflectivity and melting depth measurements using pulsed ruby laser on silicon. Appl. Phys. A 1985, 36, 31–36. [Google Scholar] [CrossRef]
- Baidullaeva, A.; Veleschuk, V.P.; Vlasenko, A.I.; Dauletmuratov, B.K.; Lyashenko, O.V.; Mozol, P.E. Effect of melting on the acoustic response of CdTe and GaAs subjected to the pulsed laser irradiation. Semiconductors 2008, 42, 281–285. [Google Scholar] [CrossRef]
- Galvin, G.J.; Thompson, M.O.; Mayer, J.W.; Peercy, P.S.; Hammond, R.B.; Paulter, N. Time-resolved conductance and reflectance measurements of silicon during pulsed-laser annealing. Phys. Rev. B 1983, 27, 1079–1087. [Google Scholar] [CrossRef]
- Meyer, F.; Büchler, A.; Brand, A.A.; Dasa, M.K.; Nekarda, J.F.; Preu, R. Impact of solidification dynamics on crystal properties of silicon molten by a nanosecond laser pulse. Appl. Phys. A 2018, 124, 254. [Google Scholar] [CrossRef]
- Meyer, J.R.; Bartoli, F.J.; Kruer, M.R. Optical heating in semiconductors. Phys. Rev. B 1980, 21, 1559–1568. [Google Scholar] [CrossRef]
- Meyer, J.R.; Kruer, M.R.; Bartoli, F.J. Optical heating in semiconductors: Laser damage in Ge, Si, InSb, and GaAs. J. Appl. Phys. 1980, 51, 5513–5522. [Google Scholar] [CrossRef]
- Veleschuk, V.P.; Vlasenko, O.I.; Vlasenko, Z.K.; Levytskyi, S.N.; Gnatyuk, D.V.; Shefer, A.V.; Borshch, V.V.; Botshch, O.B. Dependence of the melting threshold of CdTe on the wavelength and pulse duration of laser radiation. Semicond. Phys. Quantum Electron. Optoelectron. 2020, 23, 102–109. [Google Scholar] [CrossRef]
- Bäuerle, D. Laser Processing and Chemistry, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Bulgakov, A.V.; Evtushenko, A.B.; Shukhov, Y.G.; Ozerov, I.; Marine, W. Pulsed laser ablation of binary semiconductors: Mechanisms of vaporisation and cluster formation. Quantum Electron. 2010, 40, 1021–1033. [Google Scholar] [CrossRef]
- Zhvavyi, S.P.; Zykov, G.L. Simulation of dynamics of phase transitions in CdTe by pulsed laser irradiation. Appl. Surf. Sci. 2006, 253, 586–591. [Google Scholar] [CrossRef]
- Zhvavyi, S.P.; Ivlev, G.D. Influence of the initial temperature of silicon on crystallization of a layer melted by nanosecond laser heating. J. Eng. Phys. Thermophys. 1996, 69, 608–611. [Google Scholar] [CrossRef]
- Bulgakova, N.M.; Bulgakov, A.V.; Babich, L.P. Energy balance of pulsed laser ablation: Thermal model revised. Appl. Phys. A 2004, 79, 1323–1326. [Google Scholar] [CrossRef]
- Mazumder, S. Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods, 1st ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Godunov, S.K.; Ryabenkii, V.S.; Gelbard, E.M. Difference Schemes: An Introduction to the Underlying Theory; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Derrien, T.J.-Y.; Bulgakova, N.M. Modeling of silicon in femtosecond laser-induced modification regimes: Accounting for Ambipolar Diffusion. In Proceedings of the Nonlinear Optics and Applications X, Prague, Czech Republic, 24–27 April 2017; p. 102280E. [Google Scholar] [CrossRef]
- Lowndes, D.H.; Wood, R.F.; Westbrook, R.D. Pulsed neodymium: Yttrium aluminum garnet laser (532 nm) melting of crystalline silicon: Experiment and theory. Appl. Phys. Lett. 1983, 43, 258–260. [Google Scholar] [CrossRef]
- Auston, D.H.; Golovchenko, J.A.; Simons, A.L.; Slusher, R.E.; Smith, P.R.; Surko, C.M.; Venkatesanet, T.N.C. Dynamics of laser annealing. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 1979; Volume 50, pp. 11–26. [Google Scholar] [CrossRef]
- Gnatyuk, V.A.; Aoki, T.; Gorodnychenko, O.S.; Hatanaka, Y. Solid-liquid phase transitions in CdTe crystals under pulsed laser irradiation. Appl. Phys. Lett. 2003, 83, 3704–3706. [Google Scholar] [CrossRef]
- Lizunov, S.A.; Bulgakov, A.V.; Campbell, E.E.B.; Bulgakova, N.M. Melting of gold by ultrashort laser pulses: Advanced two-temperature modeling and comparison with surface damage experiments. Appl. Phys. A 2022, 128, 602. [Google Scholar] [CrossRef]
- Gurvich, L.V.; Veyts, I.V.; Alcock, C.B. Thermodynamic Properties of Individual Substances. Elements C, Si, Ge, Sn, Pb, and Their Compounds, 1st ed.; CRC Press: Boca Raton, FL, USA, 1990; Volume 2. [Google Scholar]
- Magomedov, Y.B.; Gadjiev, G.G. High-temperature thermal conductivity of silicon in the solid and liquid states. High Temp. 2008, 46, 422–424. [Google Scholar] [CrossRef]
- Jellison, G.E.; Modine, F.A. Optical absorption of silicon between 1.6 and 4.7 EV at elevated temperatures. Appl. Phys. Lett. 1982, 41, 180–182. [Google Scholar] [CrossRef]
- Fuchs, M.S. Optical properties of liquid silicon: The Integral Equation Approach. J. Phys. Condens. Matter 2000, 12, 4341–4351. [Google Scholar] [CrossRef]
- Jellison, G.E.; Lowndes, D.H. Measurements of the optical properties of liquid silicon and germanium using nanosecond time-resolved ellipsometry. Appl. Phys. Lett. 1987, 51, 352–354. [Google Scholar] [CrossRef]
- Chichkov, B.N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor Devices, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 1981. [Google Scholar]
- Aspnes, D.E.; Studna, A.A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 1983, 27, 985–1009. [Google Scholar] [CrossRef]
- Nunley, T.N.; Fernando, N.S.; Samarasingha, N.; Moya, J.M.; Nelson, C.M.; Medina, A.A.; Zollner, S. Optical constants of germanium and thermally grown germanium dioxide from 0.5 to 6.6 eV via a multisample ellipsometry investigation. J. Vac. Sci. Technol. B 2016, 34, 061205. [Google Scholar] [CrossRef]
- Szyszko, W.; Vega, F.; Afonso, C.N. Shifting of the thermal properties of amorphous germanium films upon relaxation and crystallization. Appl. Phys. A Mat. Sci. Process. 1995, 61, 141–147. [Google Scholar] [CrossRef]
- Yamasue, E.; Susa, M.; Fukuyama, H.; Nagata, K. Thermal conductivities of silicon and germanium in solid and liquid states measured by non-stationary hot wire method with silica coated probe. J. Cryst. Growth 2002, 234, 121–131. [Google Scholar] [CrossRef]
- Blakemore, J.S. Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 1982, 53, 123–181. [Google Scholar] [CrossRef]
- Jordan, A.S. Estimated thermal diffusivity, Prandtl number and Grashof number of molten GaAs, InP, and GaSb. J. Cryst. Growth 1985, 71, 551–558. [Google Scholar] [CrossRef]
- Aspnes, D.E.; Kelso, S.M.; Logan, R.A.; Bhat, R. Optical properties of AlxGa(1−x)As. J. Appl. Phys. 1986, 60, 754–767. [Google Scholar] [CrossRef]
- Papatryfonos, K.; Angelova, T.; Brimont, A.; Reid, B.; Guldin, S.; Smith, P.R.; Tang, M.; Li, K.; Seeds, A.J.; Liu, H.; et al. Refractive indices of MBE-grown AlxGa(1−x)As ternary alloys in the transparent wavelength region. AIP Adv. 2021, 11, 025327. [Google Scholar] [CrossRef]
- Bulgakova, O.A.; Bulgakova, N.M.; Zhukov, V.P. A model of nanosecond laser ablation of compound semiconductors accounting for non-congruent vaporization. Appl. Phys. A 2010, 101, 53–59. [Google Scholar] [CrossRef]
- Bell, R.O.; Toulemonde, M.; Siffert, P. Calculated temperature distribution during laser annealing in silicon and cadmium telluride. Appl. Phys. 1979, 19, 313–319. [Google Scholar] [CrossRef]
- Kovalev, A.A.; Zhvavyi, S.P.; Zykov, G.L. Dynamics of laser-induced phase transitions in cadmium telluride. Semiconductors 2005, 39, 1299–1303. [Google Scholar] [CrossRef]
- Zanio, K. Cadmium Telluride. In Semiconductors and Semimetals; Willardson, R.K., Beer, A.C., Eds.; Academic Press: New York, NY, USA, 1978; Volume 13. [Google Scholar]
- Adachi, S.; Kimura, T.; Suzuki, N. Optical properties of CdTe: Experiment and modeling. J. Appl. Phys. 1993, 74, 3435–3441. [Google Scholar] [CrossRef]
- Jordan, A.S. Some thermal and mechanical properties of InP essential to crystal growth modeling. J. Cryst. Growth 1985, 71, 559–565. [Google Scholar] [CrossRef]
- Homa, M.; Sobczak, N. Measurements of temperature and heat of phase transformation of pure silicon by using differential scanning calorimetry. J. Therm. Anal. Calorim. 2019, 138, 4215–4221. [Google Scholar] [CrossRef] [Green Version]
- Scarpulla, M.A. III-Mn-V Ferromagnetic Semiconductors Synthesized by Ion Implantation and Pulsed-Laser Melting. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2006. [Google Scholar]
- Richman, D.; Hockings, E.F. The Heats of Fusion of InSb, InAs, GaAs, and InP. J. Electrochem. Soc. 1965, 112, 461–462. [Google Scholar] [CrossRef]
Material | λ, nm | τ, ns | Fth, mJ/cm2 This Work | Fth, mJ/cm2 Literature Data |
---|---|---|---|---|
Si | 532 | 18 | 355 | 395 [6], 330 * [37] |
30 | 423 | 474 [6] 350 [38] | ||
694 | 15 | 672 | 725 [6] | |
30 | 752 | 805 [6], 980 [27] | ||
70 | 900 | |||
Ge | 694 | 15 | 191 | |
30 | 255 | 300 [27] | ||
70 | 370 | 400 * [10] | ||
GaAs | 308 | 30 | 213 | 200, 200 * [8] |
532 | 15 | 184 | ||
694 | 15 | 265 | 300 [12] | |
20 | 282 | 250 * [13], 360 * [23], 240 [27] | ||
30 | 316 | |||
70 | 415 | |||
CdTe | 248 | 20 | 46 | 50, 50 * [39] |
694 | 15 | 68 | 78 [28] | |
30 | 80 | 98 [28] | ||
70 | 103 | 130 [28] | ||
InP | 532 | 7 | 106 | 97 [30] |
694 | 15 | 165 | ||
30 | 211 | |||
70 | 296 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beránek, J.; Bulgakov, A.V.; Bulgakova, N.M. On the Melting Thresholds of Semiconductors under Nanosecond Pulse Laser Irradiation. Appl. Sci. 2023, 13, 3818. https://doi.org/10.3390/app13063818
Beránek J, Bulgakov AV, Bulgakova NM. On the Melting Thresholds of Semiconductors under Nanosecond Pulse Laser Irradiation. Applied Sciences. 2023; 13(6):3818. https://doi.org/10.3390/app13063818
Chicago/Turabian StyleBeránek, Jiří, Alexander V. Bulgakov, and Nadezhda M. Bulgakova. 2023. "On the Melting Thresholds of Semiconductors under Nanosecond Pulse Laser Irradiation" Applied Sciences 13, no. 6: 3818. https://doi.org/10.3390/app13063818
APA StyleBeránek, J., Bulgakov, A. V., & Bulgakova, N. M. (2023). On the Melting Thresholds of Semiconductors under Nanosecond Pulse Laser Irradiation. Applied Sciences, 13(6), 3818. https://doi.org/10.3390/app13063818