Reverse Knowledge Distillation with Two Teachers for Industrial Defect Detection
Abstract
:1. Introduction
- A teacher–student network architecture with two teachers is adopted for industrial image anomaly detection and localization, extracting features of images from multiple models.
- For each channel of the teacher network, the attention mechanism is employed. In addition, the iterative attention feature fusion method for the feature fusion of the two teachers is used. For the teacher and student networks, inconsistent architectures are used to mitigate overfitting.
- A large number of experiments were conducted on Mvtec and BTAD datasets to demonstrate the effectiveness of our approach.
2. Related Work
2.1. Image Reconstruction and Recovery
2.2. Embedding-Based
2.3. Abnormal Sample Synthesis
2.4. Knowledge Distillation
3. Methods
3.1. Teacher Model
3.2. Multiple Attentional Feature Fusion Module
3.3. Student Model
3.4. Training and Inference
4. Experiments
4.1. Datasets
4.2. Evaluation Protocol
4.3. Implementation Details
4.4. Results
4.5. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chai, J.; Zeng, H.; Li, A.; Ngai, E.W. Deep learning in computer vision: A critical review of emerging techniques and application scenarios. Mach. Learn. Appl. 2021, 6, 100134. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, Z.; Gao, H.; Zhang, Y.; Zhao, J.; Hong, D.; Zhang, B. Global to Local: A Hierarchical Detection Algorithm for Hyperspectral Image Target Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5544915. [Google Scholar] [CrossRef]
- Neubauer, K.; Bullard, E.; Blunt, R. Collection of Data with Unmanned Aerial Systems (UAS) for Bridge Inspection and Construction Inspection; Technical Report; Federal Highway Administration, Office of Infrastructure: Washington, DC, USA, 2021.
- Kuric, I.; Klarák, J.; Bulej, V.; Sága, M.; Kandera, M.; Hajdučík, A.; Tucki, K. Approach to Automated Visual Inspection of Objects Based on Artificial Intelligence. Appl. Sci. 2022, 12, 864. [Google Scholar] [CrossRef]
- Sharma, R.; Sungheetha, A. An efficient dimension reduction based fusion of CNN and SVM model for detection of abnormal incident in video surveillance. J. Soft Comput. Paradig. (JSCP) 2021, 3, 55–69. [Google Scholar] [CrossRef]
- Li, C.L.; Sohn, K.; Yoon, J.; Pfister, T. Cutpaste: Self-supervised learning for anomaly detection and localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 19–25 June 2021; pp. 9664–9674. [Google Scholar]
- Schlüter, H.M.; Tan, J.; Hou, B.; Kainz, B. Self-supervised out-of-distribution detection and localization with natural synthetic anomalies (nsa). arXiv 2021, arXiv:2109.15222. [Google Scholar]
- Gong, D.; Liu, L.; Le, V.; Saha, B.; Mansour, M.R.; Venkatesh, S.; Hengel, A.v.d. Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1705–1714. [Google Scholar]
- Zhou, K.; Xiao, Y.; Yang, J.; Cheng, J.; Liu, W.; Luo, W.; Gu, Z.; Liu, J.; Gao, S. Encoding structure-texture relation with p-net for anomaly detection in retinal images. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 360–377. [Google Scholar]
- Sabokrou, M.; Khalooei, M.; Fathy, M.; Adeli, E. Adversarially learned one-class classifier for novelty detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3379–3388. [Google Scholar]
- Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Langs, G.; Schmidt-Erfurth, U. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 2019, 54, 30–44. [Google Scholar] [CrossRef]
- Wang, S.; Wu, L.; Cui, L.; Shen, Y. Glancing at the patch: Anomaly localization with global and local feature comparison. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 19–25 June 2021; pp. 254–263. [Google Scholar]
- Ruff, L.; Vandermeulen, R.; Goernitz, N.; Deecke, L.; Siddiqui, S.A.; Binder, A.; Müller, E.; Kloft, M. Deep one-class classification. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm Sweden, 10–15 July 2018; pp. 4393–4402. [Google Scholar]
- Wang, G.; Han, S.; Ding, E.; Huang, D. Student-teacher feature pyramid matching for unsupervised anomaly detection. arXiv 2021, arXiv:2103.04257. [Google Scholar]
- Deng, H.; Li, X. Anomaly Detection via Reverse Distillation from One-Class Embedding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 19–20 June 2022; pp. 9737–9746. [Google Scholar]
- Zhi-Han, Y. Training Latent Variable Models with Auto-encoding Variational Bayes: A Tutorial. arXiv 2022, arXiv:2208.07818. [Google Scholar]
- Hou, J.; Zhang, Y.; Zhong, Q.; Xie, D.; Pu, S.; Zhou, H. Divide-and-assemble: Learning block-wise memory for unsupervised anomaly detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Online, 11–17 October 2021; pp. 8791–8800. [Google Scholar]
- Park, H.; Noh, J.; Ham, B. Learning memory-guided normality for anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 14372–14381. [Google Scholar]
- Zhang, X.; Mu, J. Deep anomaly detection with self-supervised learning and adversarial training. Pattern Recognit. 2022, 121, 108234. [Google Scholar] [CrossRef]
- Ye, F.; Huang, C.; Cao, J.; Li, M.; Zhang, Y.; Lu, C. Attribute restoration framework for anomaly detection. IEEE Trans. Multimed. 2020, 24, 116–127. [Google Scholar] [CrossRef]
- Salehi, M.; Eftekhar, A.; Sadjadi, N.; Rohban, M.H.; Rabiee, H.R. Puzzle-ae: Novelty detection in images through solving puzzles. arXiv 2020, arXiv:2008.12959. [Google Scholar]
- Noroozi, M.; Favaro, P. Unsupervised learning of visual representations by solving jigsaw puzzles. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 69–84. [Google Scholar]
- Haselmann, M.; Gruber, D.P.; Tabatabai, P. Anomaly detection using deep learning based image completion. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 1237–1242. [Google Scholar]
- Li, Z.; Li, N.; Jiang, K.; Ma, Z.; Wei, X.; Hong, X.; Gong, Y. Superpixel masking and inpainting for self-supervised anomaly detection. In Proceedings of the BMVC, Online, 7–10 September 2020. [Google Scholar]
- Sohn, K.; Li, C.L.; Yoon, J.; Jin, M.; Pfister, T. Learning and evaluating representations for deep one-class classification. arXiv 2020, arXiv:2011.02578. [Google Scholar]
- Liznerski, P.; Ruff, L.; Vandermeulen, R.A.; Franks, B.J.; Kloft, M.; Müller, K.R. Explainable deep one-class classification. arXiv 2020, arXiv:2007.01760. [Google Scholar]
- Wu, P.; Liu, J.; Shen, F. A deep one-class neural network for anomalous event detection in complex scenes. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 2609–2622. [Google Scholar] [CrossRef]
- Massoli, F.V.; Falchi, F.; Kantarci, A.; Akti, Ş.; Ekenel, H.K.; Amato, G. MOCCA: Multilayer One-Class Classification for Anomaly Detection. IEEE Trans. Neural Net. Learn. Syst. 2021, 33, 2313–2323. [Google Scholar] [CrossRef]
- Golan, I.; El-Yaniv, R. Deep anomaly detection using geometric transformations. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar]
- Komodakis, N.; Gidaris, S. Unsupervised representation learning by predicting image rotations. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Pourreza, M.; Mohammadi, B.; Khaki, M.; Bouindour, S.; Snoussi, H.; Sabokrou, M. G2D: Generate to detect anomaly. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Online, 5–9 January 2021; pp. 2003–2012. [Google Scholar]
- Cohen, N.; Hoshen, Y. Sub-image anomaly detection with deep pyramid correspondences. arXiv 2020, arXiv:2005.02357. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Rippel, O.; Mertens, P.; Merhof, D. Modeling the distribution of normal data in pre-trained deep features for anomaly detection. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 6726–6733. [Google Scholar]
- Defard, T.; Setkov, A.; Loesch, A.; Audigier, R. Padim: A patch distribution modeling framework for anomaly detection and localization. In Proceedings of the International Conference on Pattern Recognition, Online, 10–15 January 2021; pp. 475–489. [Google Scholar]
- Rudolph, M.; Wandt, B.; Rosenhahn, B. Same same but differnet: Semi-supervised defect detection with normalizing flows. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2021; pp. 1907–1916. [Google Scholar]
- Yoa, S.; Lee, S.; Kim, C.; Kim, H.J. Self-supervised learning for anomaly detection with dynamic local augmentation. IEEE Access 2021, 9, 147201–147211. [Google Scholar] [CrossRef]
- Zavrtanik, V.; Kristan, M.; Skočaj, D. Draem-a discriminatively trained reconstruction embedding for surface anomaly detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Online, 11–17 October 2021; pp. 8330–8339. [Google Scholar]
- Salehi, M.; Sadjadi, N.; Baselizadeh, S.; Rohban, M.H.; Rabiee, H.R. Multiresolution knowledge distillation for anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 19–25 June 2021; pp. 14902–14912. [Google Scholar]
- Zhang, X.; Li, S.; Li, X.; Huang, P.; Shan, J.; Chen, T. DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection. arXiv 2022, arXiv:2211.11317. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Zagoruyko, S.; Komodakis, N. Wide residual networks. In Proceedings of the British Machine Vision Conference (BMVC), York, UK, 19–22 September 2016. [Google Scholar]
- Dai, Y.; Gieseke, F.; Oehmcke, S.; Wu, Y.; Barnard, K. Attentional feature fusion. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikola, HI, USA, 5–9 January 2021; pp. 3560–3569. [Google Scholar]
- Deecke, L.; Vandermeulen, R.; Ruff, L.; Mandt, S.; Kloft, M. Image anomaly detection with generative adversarial networks. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Wurzburg, Germany, 16–20 September 2019; pp. 3–17. [Google Scholar]
- You, Z.; Cui, L.; Shen, Y.; Yang, K.; Lu, X.; Zheng, Y.; Le, X. A unified model for multi-class anomaly detection. In Proceedings of the Neural Information Processing Systems, New Orleans, LA, USA, 2–4 December 2022. [Google Scholar]
- Zavrtanik, V.; Kristan, M.; Skočaj, D. Reconstruction by inpainting for visual anomaly detection. Pattern Recognit. 2021, 112, 107706. [Google Scholar] [CrossRef]
- Yi, J.; Yoon, S. Patch Svdd: Patch-Level Svdd for Anomaly Detection and Segmentation. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2020; pp. 375–390. [Google Scholar]
- Gudovskiy, D.; Ishizaka, S.; Kozuka, K. Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2022; pp. 98–107. [Google Scholar]
- Mishra, P.; Verk, R.; Fornasier, D.; Piciarelli, C.; Foresti, G.L. VT-ADL: A vision transformer network for image anomaly detection and localization. In Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto, Japan, 20–23 June 2021; pp. 1–6. [Google Scholar]
- Guo, X.; Liu, X.; Zhu, E.; Yin, J. Deep clustering with convolutional autoencoders. In Proceedings of the International Conference on Neural Information Processing, Guangzhou, China, 14–18 November 2017; pp. 373–382. [Google Scholar]
Category | AnoGAN [44] | RIAD [45] | US [14] | Psvdd [46] | PaDiM [35] | Cutpaste [6] | NSA [7] | Draem [38] | CFLOW-AD [49] | UniAD [50] | ADRD [15] | Ours | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Texture | Carpet | 54 | 84.2 | 91.6 | 92.9 | 99.8 | 93.9 | 95.6 | 97 | 98.73 | 99.9 | 98.9 | 100 |
Grid | 58 | 99.6 | 81 | 94.6 | 96.7 | 100 | 99.9 | 99.9 | 99.6 | 98.5 | 100 | 99.8 | |
Leather | 64 | 100 | 88.2 | 90.9 | 100 | 100 | 99.9 | 100 | 100 | 100 | 100 | 100 | |
Tile | 50 | 98.7 | 99.1 | 97.8 | 98.1 | 94.6 | 100 | 99.6 | 99.88 | 99 | 99.3 | 99 | |
Wood | 62 | 93 | 97.7 | 96.5 | 99.2 | 99.1 | 97.5 | 99.1 | 99.12 | 97.9 | 99.2 | 99.6 | |
Average | 57.6 | 95.1 | 91.5 | 94.5 | 98.8 | 97.5 | 98.6 | 99.12 | 99.47 | 99.06 | 99.48 | 99.68 | |
Object | Bottle | 86 | 99.9 | 99.0 | 98.6 | 99.9 | 98.2 | 97.7 | 99.2 | 100 | 100 | 100 | 99.8 |
Cable | 78 | 81.9 | 86.2 | 90.3 | 92.7 | 81.2 | 94.5 | 91.8 | 97.59 | 97.6 | 95 | 99.6 | |
Capsule | 84 | 88.4 | 86.1 | 76.7 | 91.3 | 98.2 | 95.2 | 98.5 | 97.68 | 85.3 | 96.3 | 98.3 | |
Hazelnut | 87 | 83.3 | 93.1 | 92 | 92 | 98.3 | 94.7 | 100 | 99.98 | 99.9 | 99.9 | 100 | |
Metal nut | 76 | 88.5 | 82.0 | 94 | 98.7 | 99.9 | 98.7 | 98.7 | 99.26 | 99 | 100 | 100 | |
Pill | 87 | 83.8 | 87.9 | 86.1 | 93.3 | 94.9 | 99.2 | 98.9 | 96.82 | 88.3 | 96.6 | 97.4 | |
Screw | 80 | 84.5 | 54.9 | 81.3 | 85.8 | 88.7 | 90.2 | 93.9 | 91.89 | 91.9 | 97 | 98.7 | |
Toothbrush | 90 | 100 | 95.3 | 100 | 96.1 | 99.4 | 100 | 100 | 99.65 | 95 | 99.5 | 100 | |
Transistor | 80 | 90.9 | 81.8 | 91.5 | 97.4 | 96.1 | 95.1 | 93.1 | 95.21 | 100 | 96.7 | 98.1 | |
Zipper | 78 | 98.1 | 91.9 | 97.9 | 90.3 | 99.9 | 99.8 | 100 | 98.48 | 96.7 | 98.5 | 99.9 | |
Average | 82.6 | 89.9 | 85.8 | 90.8 | 93.8 | 95.5 | 96.5 | 97.41 | 97.66 | 95.37 | 97.95 | 99.18 | |
Average | 74.27 | 91.7 | 87.7 | 92.1 | 95.5 | 96.1 | 97.2 | 98.27 | 99.27 | 96.6 | 98.72 | 99.43 |
Category | US [14] | SPADE [32] | PaDiM [35] | Cutpaste [6] | Draem [38] | NSA [7] | CFLOW-AD [49] | UniAD [50] | ADRD [15] | Ours | |
---|---|---|---|---|---|---|---|---|---|---|---|
Texture | Carpet | 93.5 | 97.5 | 99.1 | 98.3 | 96.2 | 95.5 | 99.23 | 98 | 98.9 | 99.1 |
Grid | 89.9 | 93.7 | 97.3 | 97.5 | 99.5 | 99.2 | 96.89 | 94.6 | 99.3 | 99.2 | |
Leather | 97.8 | 97.6 | 99.2 | 99.5 | 98.9 | 99.5 | 99.61 | 98.3 | 99.4 | 99.3 | |
Tile | 92.5 | 87.4 | 94.1 | 90.5 | 99.5 | 99.3 | 97.71 | 91.8 | 95.6 | 95 | |
Wood | 92.1 | 88.5 | 94.9 | 95.5 | 97 | 90.7 | 94.49 | 93.4 | 95.3 | 94.7 | |
Average | 93.2 | 92.9 | 96.9 | 96.3 | 98.2 | 96.8 | 97.60 | 97.8 | 97.7 | 97.46 | |
Object | Bottle | 97.8 | 98.4 | 98.3 | 97.6 | 99.3 | 98.3 | 98.76 | 98.1 | 98.7 | 98.6 |
Cable | 91.9 | 97.2 | 96.7 | 90 | 95.4 | 96 | 97.64 | 96.8 | 97.4 | 98.3 | |
Capsule | 96.8 | 99.0 | 98.5 | 97.4 | 94.1 | 97.6 | 98.98 | 97.9 | 98.7 | 98.8 | |
Hazelnut | 98.2 | 99.1 | 98.2 | 97.3 | 99.5 | 97.6 | 98.82 | 98.8 | 98.9 | 99 | |
Metal nut | 97.2 | 98.1 | 97.2 | 93.1 | 98.7 | 98.4 | 98.56 | 95.7 | 97.3 | 97.8 | |
Pill | 96.5 | 96.5 | 95.7 | 95.7 | 97.6 | 98.5 | 98.95 | 95.1 | 98.2 | 97.7 | |
Screw | 97.4 | 98.9 | 98.5 | 96.7 | 99.7 | 96.5 | 98.10 | 97.4 | 99.6 | 99.6 | |
Toothbrush | 97.9 | 97.9 | 98.8 | 98.1 | 98.1 | 94.9 | 98.56 | 97.8 | 99.1 | 99.1 | |
Transistor | 73.7 | 94.1 | 97.5 | 93.0 | 90.0 | 88 | 93.28 | 98.7 | 92.5 | 94.7 | |
Zipper | 95.6 | 96.5 | 98.5 | 99.3 | 98.6 | 94.2 | 98.4 | 96.0 | 98.2 | 99.1 | |
Average | 94.6 | 97.6 | 97.8 | 95.7 | 97.1 | 96 | 98.14 | 97 | 97.86 | 98.27 | |
Average | 93.9 | 96.5 | 97.5 | 96 | 97.5 | 96.3 | 97.87 | 97.4 | 97.78 | 97.87 |
Category | US [14] | PaDim [35] | ADRD [15] | Ours | |
---|---|---|---|---|---|
Texture | Carpet | 87.9 | 96.2 | 97 | 97.4 |
Grid | 95.2 | 94.6 | 97.6 | 97.5 | |
Leather | 94.5 | 97.8 | 99.1 | 99.2 | |
Tile | 94.6 | 86 | 90.6 | 89.7 | |
Wood | 91.1 | 91.1 | 90.9 | 92 | |
Average | 92.7 | 93.2 | 95.0 | 95.16 | |
Object | Bottle | 93.1 | 94.8 | 96.6 | 96.6 |
Cable | 81.8 | 88.8 | 91.0 | 94.1 | |
Capsule | 96.8 | 93.5 | 95.8 | 96.5 | |
Hazelnut | 96.5 | 92.6 | 95.5 | 95.8 | |
Metal nut | 94.2 | 85.6 | 92.3 | 92.3 | |
Pill | 96.1 | 92.7 | 96.4 | 95.4 | |
Screw | 94.2 | 94.4 | 98.2 | 98.5 | |
Toothbrush | 93.3 | 93.1 | 94.5 | 94.1 | |
Transistor | 66.6 | 84.5 | 78.0 | 81 | |
Zipper | 95.1 | 95.9 | 95.4 | 97.3 | |
Average | 90.8 | 91.6 | 93.4 | 94.16 | |
Average | 91.4 | 92.1 | 93.9 | 94.66 |
BTAD | AE + MSE [47] | AE + MSE + SSIM [47] | VT-ADL [48] | Ours |
---|---|---|---|---|
0 | 0.49/- | 0.53/- | 0.99/- | 1.00/0.99 |
1 | 0.92/- | 0.96/- | 0.94/- | 0.95/0.96 |
2 | 0.95/- | 0.89/- | 0.77/- | 0.87/0.97 |
Mean | 0.78/- | 0.79/- | 0.9/- | 0.94/0.98 |
Two Teachers Network | Unpretrained | Pretrained |
---|---|---|
Texture | 86.42/77.52 | 99.68/97.46 |
Object | 71.55/79.83 | 99.18/98.27 |
Average | 78.99/78.68 | 99.43/97.87 |
Div | 2 | 4 | 6 | 8 |
---|---|---|---|---|
Texture | 99.68/97.3 | 99.96/97.46 | 98.46/97.40 | 99.68/97.46 |
Object | 97.58/97.99 | 99.12/98.20 | 99.15/98.27 | 99.18/98.27 |
Average | 98.63/97.65 | 99.44/97.83 | 98.81/97.84 | 99.43/97.87 |
Baseline | New Sutdent | Two Teachers | Mscam | Iaff | Value |
---|---|---|---|---|---|
√ | 98.72/97.78 | ||||
√ | √ | 98.90/97.83 | |||
√ | √ | √ | 99.18/97.78 | ||
√ | √ | √ | √ | 99.29/97.75 | |
√ | √ | √ | √ | √ | 99.43/97.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, M.; Liu, N.; Gao, P.; Sun, H. Reverse Knowledge Distillation with Two Teachers for Industrial Defect Detection. Appl. Sci. 2023, 13, 3838. https://doi.org/10.3390/app13063838
Pei M, Liu N, Gao P, Sun H. Reverse Knowledge Distillation with Two Teachers for Industrial Defect Detection. Applied Sciences. 2023; 13(6):3838. https://doi.org/10.3390/app13063838
Chicago/Turabian StylePei, Mingjing, Ningzhong Liu, Pan Gao, and Han Sun. 2023. "Reverse Knowledge Distillation with Two Teachers for Industrial Defect Detection" Applied Sciences 13, no. 6: 3838. https://doi.org/10.3390/app13063838
APA StylePei, M., Liu, N., Gao, P., & Sun, H. (2023). Reverse Knowledge Distillation with Two Teachers for Industrial Defect Detection. Applied Sciences, 13(6), 3838. https://doi.org/10.3390/app13063838