Wavelet Analysis for Studying Rainfall Variability and Regionalizing Data: An Applied Study of the Moulouya Watershed in Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Observed Climate Data Sources and Station Selection
2.3. Methodology—Continuous Wavelet Transformation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Zhang, X.; Liu, Z.; Wang, D. Trend analysis of precipitation in the Jinsha river basin in China. J. Hydrometeorol. 2013, 14, 290–303. [Google Scholar] [CrossRef]
- Safavi, H.R.; Sajjadi, S.M.; Raghibi, V. Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis. Theor. Appl. Climatol. 2017, 130, 635–653. [Google Scholar] [CrossRef]
- Pišoft, P.; Kalvová, J.; Brázdil, R. Cycles and trends in the Czech temperature series using wavelet transforms. Int. J. Climatol. 2004, 24, 1661–1670. [Google Scholar] [CrossRef]
- Feidas, H.; Makrogiannis, T.; Bora-Senta, E. Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theor. Appl. Climatol. 2004, 79, 185–208. [Google Scholar] [CrossRef]
- Saboohi, R.; Soltani, S.; Khodagholi, M. Trend analysis of temperature parameters in Iran. Theor. Appl. Climatol. 2012, 109, 529–547. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhang, F.; Tayyab, M.; Anjum, M.N.; Zaman, M.; Liu, J.; Farid, H.U.; Saddique, Q. Spatiotemporal analysis of precipitation variability in annual, seasonal and extreme values over upper Indus River basin. Atmos. Res. 2018, 213, 346–360. [Google Scholar] [CrossRef]
- Abahous, H.; Ronchail, J.; Sifeddine, A.; Kenny, L.; Bouchaou, L. Trend and change point analyses of annual precipitation in the Souss-Massa Region in Morocco during 1932–2010. Theor. Appl. Climatol. 2018, 134, 1153–1163. [Google Scholar] [CrossRef]
- Kessabi, R.; Hanchane, M.; Krakauer, N.Y.; Aboubi, I.; El Kassioui, J.; El Khazzan, B. Annual, Seasonal, and Monthly Rainfall Trend Analysis through Non-Parametric Tests in the Sebou River Basin (SRB), Northern Morocco. Climate 2022, 10, 170. [Google Scholar] [CrossRef]
- Ouhamdouch, S.; Bahir, M.; Ouazar, D.; Carreira, P.M.; Zouari, K. Evaluation of climate change impact on groundwater from semi-arid environment (Essaouira Basin, Morocco) using integrated approaches. Environ. Earth Sci. 2019, 78, 449. [Google Scholar] [CrossRef]
- Bouras, E.; Jarlan, L.; Khabba, D.; Er-Raki, S.; Dezetter, A.; Sghir, F.; Tramblay, Y. Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Sci. Rep. 2019, 9, 19142. [Google Scholar] [CrossRef] [Green Version]
- Addou, R.; Hanchane, M.; Obda, K.; Krakauer, N.Y.; El Khazzan, B.; Kessabi, R.; Achiban, H. Monthly Precipitation over Northern Middle Atlas, Eastern Morocco: Homogenization and Trends. Appl. Sci. 2022, 12, 23. [Google Scholar] [CrossRef]
- Tabari, H.; Hosseinzadeh Talaee, P. Analysis of trends in temperature data in arid and semi-arid regions of Iran. Glob. Planet. Change 2011, 79, 1–10. [Google Scholar] [CrossRef]
- Ouarda, T.B.M.J.; Charron, C.; Niranjan Kumar, K.; Marpu, P.R.; Ghedira, H.; Molini, A.; Khayal, I. Evolution of the rainfall regime in the united arab emirates. J. Hydrol. 2014, 514, 258–270. [Google Scholar] [CrossRef] [Green Version]
- Laignel, B.; Nouaceur, Z.; Abida, H.; Ellouze, M. Vers un retour des pluies dans le nord-est tunisien? In Proceedings of the XXVIIe Colloque de l’Association Internationale de Climatologie, Dijon, France, 2–5 July 2014; pp. 727–732. [Google Scholar]
- Hutchinson, M.F. Interpolation of rainfall data with thin plate smoothing splines—Part I: Two-dimensional smoothing of data with short range correlation. J. Geogr. Inf. Decis. Anal. 1998, 2, 139–151. [Google Scholar]
- Ed-Dahmouni, H.; Eddelani, O.; El-Broumi, S. Gestion des ressources en eau au Maroc: D’une simple lutte contre la dégradation à l’étude faisabilité des Paiements pour les Services Environnementaux (PSE)/Management of Water Resources in Morocco: From a Simple Fight against Degradation to the Feasibility Study of Payments for Environmental Services (PES). Rev. Int. Sci. Gest. 2019, 2, 675–698. [Google Scholar]
- Meddi, M.; Eslamian, S. Uncertainties in Rainfall and Water Resources in Maghreb Countries Under Climate Change. In African Handbook of Climate Change Adaptation; Oguge, N., Ayal, D., Adeleke, L., da Silva, I., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Addou, R. Hydrologie de l’Oued Melloulou et Changements Actuels: Perturbation des Régimes Climatiques et Pression Anthropique. Ph.D. Thesis, Sais Faculty of Letters and Human Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco, 2021; pp. 1–307. [Google Scholar]
- Bouchaou, L.; Tagma, T.; Boutaleb, S.; Hssaisoune, M.; El Morjani, Z.E.A. Climate change and its impacts on groundwater resources in Morocco: The case of the Souss-Massa basin. In Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations; CRC Press: London, UK, 2011; pp. 129–144. [Google Scholar]
- Akesbi, N. L’Agriculture marocaine, entre les contraintes de la dépendance alimentaire et les exigences de la régulation sociale. Maghreb-Machrek 2013, 215, 31–56. [Google Scholar] [CrossRef]
- Toumi, L. La Nouvelle Stratégie Agricole au Maroc (Plan Vert): Les Clés de la Réussite; Haut Commisariat au Plan: Casablanca, Morocco, 2008; pp. 1–17. [Google Scholar]
- Ouatiki, H.; Boudhar, A.; Ouhinou, A.; Arioua, A.; Hssaisoune, M.; Bouamri, H.; Benabdelouahab, T. Trend analysis of rainfall and drought over the Oum Er-Rbia River Basin in Morocco during 1970–2010. Arab. J. Geosci. 2019, 12, 128. [Google Scholar] [CrossRef]
- Driouech, F.; Mahé, G.; Déqué, M.; Dieulin, C.; Heirech, T.; Milano, M.; Benabdelfadel, A.; Rouché, N. Evaluation d’impacts potentiels de changements climatiques sur l’hydrologie du bassin versant de la Moulouya au Maroc. In Proceedings of the World FRIEND Conference: Global Change: Facing Risks and Threats to Water Resources, Fez, Morocco, 25–29 October 2010; pp. 561–567. [Google Scholar]
- Tramblay, Y.; El Adlouni, S.; Servat, E. Trends and variability in extreme precipitation indices over maghreb countries. Nat. Hazards Earth Syst. Sci. 2013, 13, 3235–3248. [Google Scholar] [CrossRef] [Green Version]
- Filahi, S.; Tanarhte, M.; Mouhir, L.; El Morhit, M.; Tramblay, Y. Trends in indices of daily temperature and precipitations extremes in Morocco. Theor. Appl. Climatol. 2016, 124, 959–972. [Google Scholar] [CrossRef]
- Abahous, H.; Guijarro, J.A.; Sifeddine, A.; Chehbouni, A.; Ouazar, D.; Bouchaou, L. Monthly precipitations over semi-arid basins in Northern Africa: Homogenization and trends. Int. J. Climatol. 2020, 40, 6095–6105. [Google Scholar] [CrossRef]
- Kessabi, R.; Hanchane, M.; Guijarro, J.A.; Krakauer, N.Y.; Addou, R.; Sadiki, A.; Belmahi, M. Homogenization and Trends Analysis of Monthly Precipitation Series in the Fez-Meknes Region, Morocco. Climate 2022, 10, 64. [Google Scholar] [CrossRef]
- Khomsi, K.; Mahe, G.; Tramblay, Y.; Sinan, M.; Snoussi, M. Regional impacts of global change: Seasonal trends in extreme rainfall, run-off and temperature in two contrasting regions of Morocco. Nat. Hazards Earth Syst. Sci. 2016, 16, 1079–1090. [Google Scholar] [CrossRef] [Green Version]
- Nouaceur, Z.; Murărescu, O. Rainfall Variability and Trend Analysis of Annual Rainfall in North Africa. Int. J Atmos. Sci. 2016, 2016, 7230450. [Google Scholar] [CrossRef]
- Achite, M.; Caloiero, T. Analysis of temporal and spatial rainfall variability over the Wadi Sly basin, Algeria. Arab. J. Geosci. 2021, 14, 1867. [Google Scholar] [CrossRef]
- Jemai, H.; Ellouze, M.; Abida, H.; Laignel, B. Spatial and temporal variability of rainfall: Case of Bizerte-Ichkeul Basin (Northern Tunisia). Arab. J. Geosci. 2018, 11, 117. [Google Scholar] [CrossRef]
- Zamrane, Z. Recherche D’indices de Variabilité Climatique Dans des Séries Hydroclmatiques au Maroc: Identification, Positionnement Temporel, Tendances et Liens Avec les Fluctuations Climatiques: Cas Des Grands Bassins de la Moulouya, du Sebou et du Tensift. Ph.D. Thesis, Montpellier University, Montpellier, France, 2016; p. 197. [Google Scholar]
- François, A.; Gauché, E.; Génin, A. L’adaptation des territoires aux changements climatiques dans l’Oriental marocain: La vulnérabilité entre action et perceptions. VertigO Rev. Électronique Sci. Environ. 2016, 16. [Google Scholar] [CrossRef]
- Zamrane, Z.; Mahé, G.; Laftouhi, N.E. Wavelet analysis of rainfall and runoff multidecadal time series on large river basins in western north africa. Water 2021, 13, 3243. [Google Scholar] [CrossRef]
- Santos, C.A.G.; de Morais, B.S. Identification of precipitation zones within São Francisco River basin (Brazil) by global wavelet power spectra. Hydrol. Sci. J. 2013, 58, 789–796. [Google Scholar] [CrossRef]
- Santos, M.S.; Costa, V.A.F.; Fernandes, W.D.S.; de Paes, R.P. Time-space characterization of droughts in the São Francisco river catchment using the Standard Precipitation Index and continuous wavelet transform. Rev. Bras. Recur. Hidricos 2019, 24, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Labat, D. Recent advances in wavelet analyses: Part 1. A review of concepts. J. Hydrol. 2005, 314, 275–288. [Google Scholar] [CrossRef]
- Labat, D.; Ronchail, J.; Guyot, J.L. Recent advances in wavelet analyses—Part 2: Amazon, Parana, Orinoco and Congo discharges time scale variability. J. Hydrol. 2005, 314, 289–311. [Google Scholar] [CrossRef]
- El-Khantoury, I.; Obda, K.; Achiban, H. Wavelet Analysis: A Links Between the North Atlantic Oscillation andWinter Drought in the MediterraneanWatersheds of the Western Rif (North Morocco). Eur. Sci. J. 2020, 16, 99. [Google Scholar] [CrossRef]
- Costa, A. de S.; dos Santos, N.A.; Braga, C.C. Rainfall diagnosis in different time scales in Maranhão using the wavelet transform. J. Hyperspectral Remote Sens. 2016, 6, 295–304. [Google Scholar] [CrossRef]
- Sonechkin, D.M.; Datsenko, N.M. Wavelet Analysis of Nonstationary and Chaotic Time Series with an Application to the Climate Change Problem. Pure Appl. Geophys. 2000, 157, 653–677. [Google Scholar] [CrossRef]
- Joshi, N.; Gupta, D.; Suryavanshi, S.; Adamowski, J.; Madramootoo, C.A. Analysis of trends and dominant periodicities in drought variables in India: A wavelet transform based approach. Atmos. Res. 2016, 182, 200–220. [Google Scholar] [CrossRef]
- Sang, Y.F.; Wang, D.; Wu, J.C.; Zhu, Q.P.; Wang, L. Entropy-based wavelet de-noising method for time series analysis. Entropy 2009, 11, 1123–1147. [Google Scholar] [CrossRef] [Green Version]
- Partal, T. Wavelet analysis and multi-scale characteristics of the runoff and precipitation series of the Aegean region (Turkey). Int. J. Climatol. 2012, 120, 108–120. [Google Scholar] [CrossRef]
- Baidu, M.; Amekudzi, L.K.; Aryee, J.N.A.; Annor, T. Assessment of long-term spatio-temporal rainfall variability over Ghana using wavelet analysis. Climate 2017, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Murillo, J.C.; Filella, M. Significance and causality in continuous wavelet and wavelet coherence spectra applied to hydrological time series. Hydrology 2020, 7, 82. [Google Scholar] [CrossRef]
- Sang, Y. A review on the applications of wavelet transform in hydrology time series analysis. Atmos. Res. 2013, 122, 8–15. [Google Scholar] [CrossRef]
- Nourani, V.; Andalib, G.; Dąbrowska, D. Conjunction of wavelet transform and SOM-mutual information data pre- processing approach for AI-based multi-station nitrate modeling of watersheds. J. Hydrol. 2017, 548, 170–183. [Google Scholar] [CrossRef]
- Riad, S. Typologie et Analyse Hydrologique des Eaux Superficielles à Partir de Quelques Bassins Versants Représentatifs du Maroc. Ph.D. Thesis, Ibn Zohr University, Agadir, Morocco, Polytechnic University of Lille, Lille, France, 2003; pp. 1–154. [Google Scholar]
- Amiri, M.; Salem, A.; Ghzal, M. Spatial-Temporal Water Balance Components Estimation Using Integrated GIS-Based Wetspass-M Model in Moulouya Basin, Morocco. ISPRS Int. J. Geo-Inf. 2022, 11, 139. [Google Scholar] [CrossRef]
- Royaume du Maroc Haut Commissariat au Plan Direction Régionale d’Oujda. L’otientale: Chiffres clés 2013; Royaume du Maroc Haut Commissariat au Plan, Direction Régionale d’Oujda: Oujda, Marocco, 2014; pp. 1–29.
- Tekken, V.; Protection, C. Climate-Driven or Human-Induced: Indicating Severe Water Scarcity in the Moulouya River Basin (Morocco). Water 2012, 4, 959–982. [Google Scholar] [CrossRef] [Green Version]
- Diani, K.; Tabyaoui, H.; Kacimi, I.; El Hammichi, F.; Nakhcha, C. Stream Network Modelling from Aster GDEM Using ArcHydro GIS: Application to the Upper Moulouya River Basin (Eastern, Morocco). J. Geosci. Environ. Prot. 2017, 5, 1–13. [Google Scholar] [CrossRef]
- Guijarro, J.A.; López, J.A.; Aguilar, E.; Domonkos, P.; Victor, K.C.V.; Sigró, J.; Brunet, M. Comparison of homogenization packages applied to monthly series of temperature and precipitation: The MULTITEST project. In Proceedings of the 9th Seminar for Homogenization and Quality Control in Climatological Databases, Budapest, Hungary, 3–7 April 2017; pp. 46–62. [Google Scholar]
- Guijarro, J.A. Recommended Homogenization Techniques Based on Benchmarking Results; Indices: Tarragona, Spain, 2020; pp. 1–9. [Google Scholar]
- Mahmood, R.; Jia, S. Quality control and homogenization of daily meteorological data in the trans-boundary region of the Jhelum River basin. J. Geogr. Sci. 2016, 26, 1661–1674. [Google Scholar] [CrossRef] [Green Version]
- Yimer, S.M.; Kumar, N.; Bouanani, A.; Tischbein, B.; Borgemeister, C. Homogenization of daily time series climatological data in the Eastern Nile basin, Ethiopia. Theor. Appl. Climatol. 2021, 143, 737–760. [Google Scholar] [CrossRef]
- Adarsh, S.; Janga Reddy, M. Trend analysis of rainfall in four meteorological subdivisions of southern India using nonparametric methods and discrete wavelet transforms. Int. J. Climatol. 2015, 35, 1107–1124. [Google Scholar] [CrossRef]
- Pandey, B.K.; Tiwari, H.; Khare, D. Trend analysis using discrete wavelet transform (DWT) for long-term precipitation (1851–2006) over India. Hydrol. Sci. J. 2017, 62, 2187–2208. [Google Scholar] [CrossRef]
- Zhao, T.; Wu, L.; Li, D.; Ding, Y. Multifractal Analysis of Hydrologic Data Using Wavelet Methods and Fluctuation Analysis. Discret. Dyn. Nat. Soc. 2017, 2017, 3148257. [Google Scholar] [CrossRef] [Green Version]
- Grossmann, A.; Morlet, J. Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape. SIAM J. Math. Anal. 1984, 15, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Khedimallah, A.; Meddi, M.; Mahé, G. Characterization of the interannual variability of precipitation and runoff in the Cheliff and Medjerda basins (Algeria). J. Earth Syst. Sci. 2020, 129, 134. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Rybski, D.S.; Zschiegner, A.; Braun, P.; Koscielny-Bunde, E.; Livina, V.; Havlin, S.; Bunde, A. Multifractality of river runoff and precipitation: Comparison of fluctuation analysis and wavelet methods. Phys. Stat. Mech. Its Appl. 2003, 330, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis; Program in Atmospheric and Oceanic Sciences, University of Colorado: Boulder, CO, USA, 1998. [Google Scholar]
- Labat, D. Cross wavelet analyses of annual continental freshwater discharge and selected climate indices. J. Hydrol. 2010, 385, 269–278. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Cunado, J.; Gupta, R.; Wohar, M.E. Are stock returns an inflation hedge for the UK? Evidence from a wavelet analysis using over three centuries of data. Stud. Nonlinear Dyn. Econom. 2019, 23, 20170049. [Google Scholar] [CrossRef] [Green Version]
- Bekri, M.H.; El Hmaidi, A.; El Faleh, E.M.; Essahlaoui, A.; El Ouali, A.; Jaddi, H.; Ousmana, H. Caractérisation des épisodes de sècheresse dans le bassin versant de l’Oued d’Ansegmir (Haute Moulouya, Maroc). J. Int. Sci. Tech. Eau Environ. 2019, IV, 85–93. [Google Scholar]
- Hachem, A.; Mili, E.M.; Benbella, B.; El Ouardi, H.; Mehdaoui, R. Characterization of Climatic Drought Sequences in the Upper Moulouya Watershed, Morocco. Ecol. Eng. Environ. Technol. 2023, 24, 162–179. [Google Scholar] [CrossRef]
- Ait Haddou, M.; Kabbachi, B.; Aydda, A.; Gougni, H.; Bouchriti, Y. Spatial and temporal rainfall variability and erosivity: Case of the Issen watershed, SW-Morocco. E3S Web Conf. 2020, 183, 02003. [Google Scholar] [CrossRef]
- Sbai, A.; Mouadili, O.; Hlal, M.; Benrbia, K.; Mazari, F.Z.; Bouabdallah, M.; Saidi, A. Water Erosion in the Moulouya Watershed and its Impact on Dams’ Siltation (Eastern Morocco). Proc. Int. Assoc. Hydrol. Sci. 2021, 384, 127–131. [Google Scholar] [CrossRef]
- Driouech, F. Distribution des Précipitations Hivernales Sur le Maroc Dans le Cadre d’un Changement Climatique: Descente D’échelle et Incertitudes. Ph.D. Thesis, The University of Toulouse, Toulouse, France, 2010; pp. 1–164. [Google Scholar]
- Correa, C.S.; Guedes, R.L.; da Rocha, A.M.M.; Corrêa, K.A.B. Multidecadal cycles of the climatic index atlantic meridional mode: Sunspots that affect north and northeast of Brazil. J. Aerosp. Technol. Manag. 2020, 12, e0420. [Google Scholar] [CrossRef]
- Abdelali, S.; Mohammed, H.; Fougrach, H.; Saloui, A. Retour des pluies au maroc méridional. In Proceedings of the XXVIIe Colloque de l’Association Internationale de Climatologie, Dijon, France, 2–5 July 2014; pp. 596–600. [Google Scholar]
- Kessabi, R.; Hanchane, M.; Caloiero, T.; Pellicone, G.; Addou, R.; Krakauer, N.Y. Analyzing Spatial Trends of Precipitation Using Gridded Data in the Fez-Meknes Region, Morocco. Hydrology 2023, 10, 37. [Google Scholar] [CrossRef]
- Talagala, T.; Lokupitiya, R. Wavelet analysis of dengue transmission pattern in Sri Lanka. Int. J. Mosq. Res. 2015, 2, 13–18. [Google Scholar]
- Mateescu, M.; Haidu, I. La méthode des ondelettes comme outil de test d’homogénéité le cas des précipitations à Cluj, Roumanie. In Proceedings of the XXème Colloque de l’Association Internationale de Climatologie: Climat, Tourisme, Environnement, Carthage, Tunisia, 3–8 September 2007; pp. 369–374. [Google Scholar]
- Hanchane, M. Méthodologie de régionalisation spatio- temporelle pour une analyse des précipitations (1961–1992): Application au Maroc atlantique. In Proceedings of the Actes du Deuxième Colloque International “Eau & Climat: Regards croisés Nord/Sud”, Fez, Morocco, 27–28 November 2013. [Google Scholar]
- Nouaceur, Z.; Laignel, B.; Turki, I. Changements climatiques au Maghreb: Vers des conditions plus humides et plus chaudes sur le littoral algérien? Physio-Géo 2013, 7, 307–323. [Google Scholar] [CrossRef]
Name | ID | Longitude | Latitude | Elevation |
---|---|---|---|---|
Bab Azhar | S1 | −4.265918 | 34.046246 | 788 |
Bab Bouidir | S2 | −4.125435 | 34.068080 | 1543 |
Bab Louta | S3 | −4.331743 | 34.015481 | 575 |
Bechine | S4 | −3.931068 | 34.084582 | 970 |
Belfarah | S5 | −3.705054 | 34.112617 | 512 |
Beni Bouiloul | S6 | −3.979200 | 33.562500 | 1882 |
Berkine | S7 | −3.847212 | 33.766181 | 1287 |
Guercif | S8 | −3.357308 | 34.219526 | 362 |
Maghraoua | S9 | −4.049149 | 33.934194 | 1140 |
Missour | S10 | −3.999194 | 33.045993 | 891 |
Mrija | S11 | −3.276919 | 33.995082 | 667 |
Outat El Haj | S12 | −3.701842 | 33.332709 | 763 |
Ras Laksar | S13 | −3.750186 | 33.961651 | 726 |
Saka | S14 | −3.061494 | 34.539729 | 240 |
Taddert | S15 | −3.593560 | 34.216035 | 445 |
Tahla | S16 | −4.426335 | 34.047740 | 571 |
Tamjilt | S17 | −4.015090 | 33.643434 | 1645 |
Tandit | S18 | −3.622948 | 33.663278 | 667 |
Taza | S19 | −4.009750 | 34.219546 | 522 |
Tazzeka | S20 | −4.183007 | 34.089941 | 1971 |
Zrarda | S21 | −4.375925 | 33.973901 | 841 |
Rechida | S22 | −3.226150 | 33.873550 | 1080 |
Aknoul | S23 | −3.841523 | 34.649155 | 1000 |
Ansegmir | S24 | −4.927237 | 32.577055 | 1400 |
Khenifra | S25 | −5.665032 | 32.943861 | 836 |
Midelt | S26 | −4.745622 | 32.641576 | 1497 |
Taourirt | S27 | −2.876744 | 34.415103 | 358 |
Zaida | S28 | −4.961640 | 32.809918 | 1457 |
Tabouazant | S29 | −5.066797 | 32.552164 | 1645 |
Aguelman Sidi Ali | S30 | −4.994316 | 33.079951 | 2089 |
Ait Aissa | S31 | −5.068743 | 33.164349 | 1905 |
Dar El Hamra | S32 | −4.371116 | 33.695517 | 1142 |
Tighezratine | S33 | −3.899818 | 34.683683 | 1115 |
Elmers | S34 | −4.393494 | 33.458244 | 1242 |
Ait Khabbach | S35 | −4.823201 | 33.385776 | 1491 |
1–2 | 2–4 | 4–8 | 8–16 | 16–32 | |
---|---|---|---|---|---|
S1 | 1970–2014 | 1995–2002 | 1997–2014 | ||
S2 | 1970–1998; 2001–2005; 2008–2014 | 1995–1997; 2009–2012 | 1993–2014 | 1974–1996 | |
S3 | 1970–1991; 1993–2014 | 2010–2012 | 1995–2010 | 1983–2008 | |
S4 | 1970–2014 | 1995–2012 | 1983–2008 | ||
S5 | 2008–2012 | 1983–2008 | |||
S6 | 1973–1983; 1995–2000 | 1990–2001 | 1983–2008 | ||
S7 | 1972–1981 | 2000–2012 | |||
S8 | 1975–1980; 2008–2015 | ||||
S9 | 1970–1981; 1985–2014 | 1999–2012 | 1983–2008 | ||
S10 | 1978–1981 | ||||
S11 | 1973–1984 | 2008–2012 | |||
S12 | 1974–1979 | ||||
S13 | 1985–1993 | ||||
S14 | |||||
S15 | 1998–2011 | ||||
S16 | 1970–1980; 1983–2014 | 1996–2000 | 1990–2010 | ||
S17 | 1972–1988 | 2010–2014 | 1976–2010 | ||
S18 | 1978–1984 | 1973–1982; 1993–2000 | |||
S19 | 1970–2014 | 1995–2005 | 2000–2015 | ||
S20 | 1970–1990; 1992–1996; 1999–2014 | 2012–2015 | 1995–2012 | ||
S21 | 1970–2019 | 1992–2008 | 1983–2008 | ||
S22 | 1999–2001 | 1998–2014 | 1983–2008 | ||
S23 | 1970–1990; 1995–2014 | 1993–2013 | |||
S24 | 1992–2012 | 1995–2012 | 1983–2008 | ||
S25 | 1970–2004; 2008–2014 | 1993–2011 | 1990–1998 | ||
S26 | 1972–1983; 1993–1996; 2011–2013 | 1983–2008 | |||
S27 | |||||
S28 | 1983–2008 | 1980–2010 | |||
S29 | 1994–1998 | 1990–2010 | |||
S30 | 2010–2014 | 1992–2011 | 1980–2010 | ||
S31 | 2006–2015 | 1990–2015 | 2003–2010 | ||
S32 | 1970–2018 | ||||
S33 | 1970–1992; 1995–2018 | 1995–2013 | |||
S34 | 1987–2014 | 1978–2011 | |||
S35 | 1975–1980 | 1991–2010 | 1983–2008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Addou, R.; Hanchane, M.; Krakauer, N.Y.; Kessabi, R.; Obda, K.; Souab, M.; Achir, I.E. Wavelet Analysis for Studying Rainfall Variability and Regionalizing Data: An Applied Study of the Moulouya Watershed in Morocco. Appl. Sci. 2023, 13, 3841. https://doi.org/10.3390/app13063841
Addou R, Hanchane M, Krakauer NY, Kessabi R, Obda K, Souab M, Achir IE. Wavelet Analysis for Studying Rainfall Variability and Regionalizing Data: An Applied Study of the Moulouya Watershed in Morocco. Applied Sciences. 2023; 13(6):3841. https://doi.org/10.3390/app13063841
Chicago/Turabian StyleAddou, Rachid, Mohamed Hanchane, Nir Y. Krakauer, Ridouane Kessabi, Khalid Obda, Majda Souab, and Imad Eddine Achir. 2023. "Wavelet Analysis for Studying Rainfall Variability and Regionalizing Data: An Applied Study of the Moulouya Watershed in Morocco" Applied Sciences 13, no. 6: 3841. https://doi.org/10.3390/app13063841
APA StyleAddou, R., Hanchane, M., Krakauer, N. Y., Kessabi, R., Obda, K., Souab, M., & Achir, I. E. (2023). Wavelet Analysis for Studying Rainfall Variability and Regionalizing Data: An Applied Study of the Moulouya Watershed in Morocco. Applied Sciences, 13(6), 3841. https://doi.org/10.3390/app13063841